Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0
1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)
g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)
i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)
p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)
r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)
t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)
v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)
Cho biểu thức \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
a) Rút gọn A
b) Tính giá trị biểu thức khi \(\left|x\right|=\frac{1}{2}\)
Bài 2. Giải các phương trình sau
a, \(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)
b, \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
c, \(\frac{x-1}{2}-\frac{x+1}{15}-\frac{2x-13}{6}=0\)
d,\(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
e, \(\frac{3\left(5x-2\right)}{4}-2=\frac{7x}{3}-5\left(x-7\right)\)
f, \(\frac{x+5}{2}+\frac{3-2x}{4}=x-\frac{7+x}{6}\)
g, \(\frac{x-3}{11}+\frac{x+1}{3}=\frac{x+7}{9}-1\)
h, \(\frac{3x-0,4}{2}+\frac{1,5-2x}{3}=\frac{x+0,5}{5}\)
Cho biểu thức A = \(\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\times\left(\frac{1}{1-x}-1\right)\)
a) Rút gọn biểu thức A
b) Tìm các giá trị nguyên của x để A nhận giá trị nguyên
c) Tìm x sao cho A < 0
Bài 1: Cho \(A=\frac{1}{x-2}+\frac{x^2-x-2}{x^2-7x+10}-\frac{2x-4}{x-5}\)
a, Rút gọn A b,Tìm x nguyên để A nguyên
Bài 2: Cho \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)
a, Tìm điều kiện xác định của M b, Rút gọn M c, Tính giá trị của M khi \(\left|x\right|=\frac{1}{2}\)
Bài 3: Cho biểu thức \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}\cdot\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)
a, Rút gọn N b,Tính giá trị của N khi \(y=\frac{1}{2}\) c,Tìm giá trị của y để N luôn có giá trị dương
cho biểu thức sau : B = ( \(\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)(x #1 ,x#2,x#-5 )
a, Rút gọn B
b, tính giá trị B biết ( x+5 )^2 - 9x-45 = 0
c, Tìm x nguyên để B nhận gt nguyên
d, tìm x để B = \(\frac{-3}{4}\)
Bài 1 : giải phương trình sau :
a) 3x-1= 2x+4 b) 5x-2 = 0 c)7x-4=3x+12 d)\(\frac{x-1}{2}+\frac{3x+2}{4}=\frac{x-7}{12}\)
Bài 2 : Thực hiện phép tính :
a) \(\left(\frac{x+1}{x^2-2x+1}+\frac{1}{x-1}\right):\frac{x}{x-1}-\frac{2}{x-1}\)
b) \(\left(x^3-x^2-7x+3\right):\left(x-3\right)\)
c)\(\frac{1}{x+1}+\frac{5}{x-2}-\frac{3x}{\left(x+1\right)\left(x-2\right)}\)
giúp mình với !
Cho biểu thức \(P=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
a) Thu gọn P
b) Tính giá trị của P biết x thỏa mãn \(\left|2x+3\right|=x+5\)
1. Cho biểu thức A=\(\frac{x+2}{x-1}\cdot\left(\frac{x^4}{2x^2+2x}+1\right)-\frac{8x+7}{2x^2-2}\)
a) Rút gọn biểu thức.
b)Chứng minh rằng x khác 0; x khác -1;x khác 1 thì biểu thức A có giá trị luôn luôn dương.