Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Hải Yến

cho biểu thức:

C = \(\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right)\)

a) rút gọn

b)CMR: C>1

Nguyễn Lê Phước Thịnh
6 tháng 9 2020 lúc 11:02

a) Ta có: \(C=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right)\)

\(=\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)

\(=\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}:\left(\frac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-\left(x\sqrt{x}-y\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)

\(=\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}:\frac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\cdot\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{y}-y\sqrt{x}}\)

\(=\frac{\left(x-\sqrt{xy}+y\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}\)

\(=\frac{x-\sqrt{xy}+y}{\sqrt{xy}}\)

b) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\y>0\\x\ne y\end{matrix}\right.\)

Ta có: \(C-1=\frac{x-\sqrt{xy}+y}{\sqrt{xy}}-1\)

\(=\frac{x-\sqrt{xy}+y-\sqrt{xy}}{\sqrt{xy}}\)

\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{xy}}>0\forall x,y\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow C-1>0\)

hay C>1(đpcm)


Các câu hỏi tương tự
Xích U Lan
Xem chi tiết
Nguyễn Thị Thúy Ngân
Xem chi tiết
nguyenvietphuong
Xem chi tiết
Cha Eun Woo
Xem chi tiết
이성경
Xem chi tiết
Quốc Sơn
Xem chi tiết
trinh mai
Xem chi tiết
Tran Tuan
Xem chi tiết
Hanhoan
Xem chi tiết