a) Ta có: \(C=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right)\)
\(=\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)
\(=\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}:\left(\frac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-\left(x\sqrt{x}-y\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)
\(=\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}:\frac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\cdot\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{y}-y\sqrt{x}}\)
\(=\frac{\left(x-\sqrt{xy}+y\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\frac{x-\sqrt{xy}+y}{\sqrt{xy}}\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\y>0\\x\ne y\end{matrix}\right.\)
Ta có: \(C-1=\frac{x-\sqrt{xy}+y}{\sqrt{xy}}-1\)
\(=\frac{x-\sqrt{xy}+y-\sqrt{xy}}{\sqrt{xy}}\)
\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{xy}}>0\forall x,y\) thỏa mãn ĐKXĐ)
\(\Leftrightarrow C-1>0\)
hay C>1(đpcm)