để đề nt là sai,phải kết hợp lại:
\(\hept{\begin{cases}a+x=b\\a-x=b\end{cases}}\)
\(\Rightarrow a+x+a-x=b+b\)
\(\Rightarrow2a=2b\)
\(\Rightarrow a=b\)
đến đây bí
để đề nt là sai,phải kết hợp lại:
\(\hept{\begin{cases}a+x=b\\a-x=b\end{cases}}\)
\(\Rightarrow a+x+a-x=b+b\)
\(\Rightarrow2a=2b\)
\(\Rightarrow a=b\)
đến đây bí
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ
Cho a; b; c là các số số nguyên dương thỏa mãn \(a+b+c=1\) . Tìm Max của
\(A=\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+xz}}+\dfrac{z}{z+\sqrt{z+xy}}\)
Cho các biểu thức:
A = x - 3 x x + 2 và B = x x - 3 - 3 x + 3 : x + 9 2 x + 6
với x ≥ 0 và x ≠ 9
a, Tính giá trị của A khi x = 25
b, Rút gọn B
c, Tìm các giá trị x nguyên để A.B có giá trị nguyên
Cho các biểu thức: A = 6 x + 2 x và B = x x - 4 + 2 2 - x + 1 x + 2 với x > 0 và x ≠ 4
a, Tính giá trị của A khi x=1/4 và rút gọn B
b, Đặt M = A B . Hãy tìm các giá trị của x để M > 1
c, Tìm các giá trị của x nguyên để M nguyên
Bài 1: Tìm các số nguyên dương a,b thỏa mãn a+2 chia hết cho b và b+3 chia hết cho a.
Bài 2: Cho các số nguyên dương phân biệt x,y,z sao cho x3+y3+z3 chia hết cho x2y2z2. Tính P=(x3+y3+z3)/(x2y2z2)
1.cho 0<a,b,c<1. CMR: 2(a3+b3+c3)<3+a2b+b2c+c2a
2. tìm tất cả các cặp số nguyên dương (a;b) sao cho (a+b2) chia hết cho (a2b-1)
3. tìm x,y,z thuộc N thỏa mãn\(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
Cho a,b,c là các số nguyên khác 0 thỏa mãn \(a+b+c=2015\)
Tìm mối liên hệ của x,y,z nếu có
\(\frac{\left|x-y\right|}{a}=\frac{\left|y-z\right|}{b}=\frac{\left|z-x\right|}{c}\)
a) Tìm xx để biểu thức sau có nghĩa: P=\(\sqrt{5x+3}+2018.\sqrt{x}\)
b) Cho hàm số y=\(\dfrac{1}{2}x^2\). Điểm Đ có hoành độ x=−2 thuộc đồ thị hàm số. Tìm tọa độ điểm D
c) Tìm giá trị của a và b để đường thẳng d:y=ax+b−1 đi qua hai điểm A(1;1) và B(2;3).