(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac
⇒ 2ab + 2bc + 2ac = (a + b + c)2 - (a2 + b2 + c2)
⇒ 2.(ab + bc + ac) = 92 - 53
2.(ab + bc + ac) = 81 - 53
2.(ab + bc + ac) = 28
ab + bc + ac = 28 : 2
ab + bc + ac = 14
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac
⇒ 2ab + 2bc + 2ac = (a + b + c)2 - (a2 + b2 + c2)
⇒ 2.(ab + bc + ac) = 92 - 53
2.(ab + bc + ac) = 81 - 53
2.(ab + bc + ac) = 28
ab + bc + ac = 28 : 2
ab + bc + ac = 14
1,Cho các số thực a,b,c thỏa mãn điều kiện : a2+b2+c2=3a2+b2+c2=3 và a+b+c+ab+ac+bc=6a+b+c+ab+ac+bc=6.
Tính A=a30+b4+c1975a30+b4+c2014
cho ba so a,b,c khac 0 thoa man ab+bc +ac = 0 .tinh B=bc/a2 + ca/b2 + ab/c2
Cho biểu thức D = a ( b 2 + c 2 ) – b ( c 2 + a 2 ) + c ( a 2 + b 2 ) – 2 a b c . Phân tích D thành nhân tử và tính giá trị của C khi a = 99; b = -9; c = 1.
A. D = (a – b)(a + c)(c – b); D = 90000
B. D = (a – b)(a + c)(c – b); D = 108000
C. D = (a – b)(a + c)(c + b); D = -86400
D. D = (a – b)(a – c)(c – b); D = 105840
Cho các số tự nhiên a,b,c thoả mãn: a2+b2+c2=ab+bc+ca và a+b+c=3.Tính M= a2016 +b2015 +c2020
Chứng minh rằng nếu a2+b2+c2-ab-bc-ac=0 thì a=b=c
cho a,b, thỏa mãn điều kiện a2 b2 c2 1 chứng minh abc 2 1 a b c ab bc ac ≥0
Cho a, b, c, d thỏa mãn a + b + c + d = 0; ab + ac + bc = 1. Rút gọn biểu thức P = 3(ab − cd)(bc − ad)(ca − bd) (a 2 + 1)(b 2 + 1)(c 2 + 1) ?
A. -1
B. 1
C. 3
D. -3
Cho a2+b2+c2=ab+bc+ca.Chứng minh a=b=c
cho a,b,c là độ dài 3 cạnh tam giác.
a)a2/b2+b2/a2≥ a/b+b/a
b)a2/b+b2/a+c2/a≥ a+b+c
c)a2/(b+c)+b2/(a+c)+c2/(a+b)≥ (a+b+c)/2