cho a,b,c là các số dương thỏa mãn a+b+c= 4.Chứng minh rằng \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}\ge2\sqrt{2}\)
1. CHỨNG MINH ĐẲNG THỨC
a. \(\text{[}3+2\sqrt{6}-\sqrt{33}\text{]}\cdot\text{[}\sqrt{22}+\sqrt{6}+4\text{]}=24\)
b. \(\text{[}\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\text{]}\cdot\text{[}15+2\sqrt{6}\text{]}\)
c.\(\text{[}\frac{4}{3}\cdot\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\text{]}\cdot\text{[}\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\text{]}=4\)
d. \(\sqrt{\text{[}1-\sqrt{1989}\text{]}^2}\cdot\sqrt{1990+2\sqrt{1989}}=1988\)
e. \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)với \(a>0;b>0\)và \(a\ne b\)
Cho a,b,c là các số dương thỏa mãn a+b+c=4.Chứng minh rằng:
\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
Bạn nào biết giúp mình với
\(4\cdot\left(\sqrt{a^3\cdot b^3}\right)+4\cdot\sqrt{b^3\cdot c^3}+4\cdot\sqrt{c^3\cdot a^3}< =4\cdot c^3+\left(a+b\right)^3\)Cho a,b,c>=0 cm
Cho a,b,c > 0 thỏa mãn \(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}=3\). Chứng minh rằng:
\(N=\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{c^4}{a^2}\ge3\)
cho a,b,c dương thỏa mãn a+b=c. Chứng minh rằng \(\sqrt[4]{a^3}+\sqrt[4]{b^3}>\sqrt[4]{c^3}\)
a) \(\left(2+\sqrt{3}\right)\cdot\sqrt{7-4\sqrt{3}}\)
b) \(\sqrt{4+2\sqrt{3}}-\sqrt{5+2\sqrt{6}}+\sqrt{2}+\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
c) \(\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
TÍNH :
\(A=\sqrt{3+\sqrt{5+2\sqrt{3}}}\cdot\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
\(B=\sqrt{4+\sqrt{8}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(C=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(D=\left[4+\sqrt{15}\right]\left[\sqrt{10}-\sqrt{6}\right]\cdot\sqrt{4-\sqrt{15}}\)
\(E=\left[3-\sqrt{5}\right]\cdot\sqrt{3+\sqrt{5}}\text{ }+\left[3+\sqrt{5}\right]\cdot\sqrt{3-\sqrt{5}}\)
Cho a,b,c >0 thỏa mãn abc=1. Chứng minh
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\)