Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Anh Dũng An

Cho a+b+c=0 CMR:\(\left(a^2+b^2+c^2\right)^2=2\left(a^4+b^4+c^4\right)\)

Hoàng Thế Hải
13 tháng 10 2018 lúc 21:17

Từ a+b+c=0 có b+c =-a 
Suy ra (b+c)^2 = (-a)^2 hay b^2 + c^2 +2bc = a^2 
hay b^2 + c^2 -a^2 = -2bc 
Suy ra (b^2 + c^2 - a^2)^2 = (-2bc)^2 
<=> b^4 + c^4 + a^4 +2b^2.c^2 - 2a^2.b^2 - 2a^2.c^2 = 4b^2.c^2 
<=> a^4 + b^4 + c^4 = 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2 
<=> 2(a^4 + b^4 + c^4) =a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2 
<=> 2(a^4 + b^4 + c^4 ) =(a^2 + b^2 + c^2)               ( Đpcm)

kudo shinichi
13 tháng 10 2018 lúc 21:31

Ta có: \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow a^2+b^2+c^2=-2.\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=\left[-2.\left(ab+bc+ca\right)\right]^2\)

\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2+4abc\left(a+b+c\right)\)

\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+a^4+b^4+c^4\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=2.\left(a^4+b^4+c^4\right)\)

                                                   đpcm

Tham khảo nhé~


Các câu hỏi tương tự
Văn Trọng Khôi
Xem chi tiết
Kaneki Ken
Xem chi tiết
Nguyễn Anh Dũng An
Xem chi tiết
Nguyễn Anh Dũng An
Xem chi tiết
Củ Lạc Giòn Tan
Xem chi tiết
Cuong Dang
Xem chi tiết
Nguyễn Bảo Long
Xem chi tiết
Nguyễn Anh Dũng An
Xem chi tiết
toán khó mới hay
Xem chi tiết