Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hồng Ngọc

Cho ∆ABC nhọn nội tiếp đường tròn tâm O. Các đường cao BH và CK của ∆ABC cắt nhau tại I. Kẻ đường kính AD của đường tròn tâm O. Các đoạn thẳng DI và BC cắt nhau tại M, Chứng minh rằng:

a, Tứ giác AHIK nội tiếp được trong một đường tròn.

b, OM vuông góc với BC

Nguyen Minh Hieu
22 tháng 8 2021 lúc 15:36

a) Xét tứ giác AHIK có:

\(\widehat{AKI}+\widehat{AHI}=90^0+90^0=180^0\)

Nên tứ giác AHIK nội tiếp được trong một đường tròn(đpcm)

b) Vì CI vuông góc với AB(I là trực tâm tam giác ABC) và BD vuông góc với AB(góc nội tiếp chắn nửa đường tròn) nên CI // BD.

VÌ BI vuông góc với AC(I là trực tâm tam giác ABC) và CD vuông góc với AC(góc nội tiếp chắn nửa đường tròn) nên BI // CD.

Xét tứ giác BICD có:

CI // BD; BI // CD

Nên tứ giác BICD là hình bình hành.

Suy ra, BC và DI cắt nhau tại M là trung điểm của mỗi đoạn.

Xét tam giác AID có:

O là trung điểm của AD và M là trung điểm của DI nên OM là đường trung bình của tam giác AID.

Suy ra, AI // OM. Mà AI vuông góc với BC(do I là trực tâm tam giác ABC) nên OM vuông góc với BC(đpcm).


Các câu hỏi tương tự
Nhàn Nguyễn
Xem chi tiết
My Dieu
Xem chi tiết
Thiên An
Xem chi tiết
Linh Lê
Xem chi tiết
Trong Nguyễn Anh
Xem chi tiết
Thanh Thảo
Xem chi tiết
Nguyễn Minh Dang98
Xem chi tiết
Mèo con dễ thương
Xem chi tiết
Văn A Lê
Xem chi tiết