Biến đổi BPT về dạng : \(\frac{a+b-2c}{c}+\frac{b+c-2a}{a}+\frac{c+a-2b}{b}\ge0\)
\(\Leftrightarrow\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\ge6\)\(\text{(*)}\)
Áp dụng BĐT Cô si cho VT , ta được
\(\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\ge6.\sqrt[6]{\frac{a}{c}\cdot\frac{b}{c}\cdot\frac{b}{a}\cdot\frac{c}{a}\cdot\frac{c}{b}\cdot\frac{a}{b}}=6\left(đpcm\right)\)
Vậy dấu " = " xảy ra khi \(\frac{a}{c}=\frac{b}{c}=\frac{b}{a}=\frac{c}{a}=\frac{c}{b}=\frac{a}{b}\Leftrightarrow a=b=c\)