Cho điểm A nằm ngoài đường tròn (O).Vẽ tiếp tuyến AB,AC và cát tuyến ADE.
a) chứng minh AB^2=AD.AE
b) Tia phân giác DBE cắt DE ở M.Chứng minh AB=AM và CM là tia phân giác của góc DCE
Cho ∆ABC cân nội tiếp đường tròn (O), cung nhỏ BC có số
đo bằng 100 độ
. Tia AO cắt cung nhỏ BC ở E.a) Tính số đo các góc ở tâm BOE, COE.b) Tính số đo các cung nhỏ
AB CD , .
Cho đường tròn (O:R) và một điểm M nằm ngoài đường tròn sao cho MO=2R. Từ M vẽ tiếp tuyến MA với (O); tia OM cắt đường tròn tại B
a) Tính số đo cung AB
b) Kẻ tiếp tuyến MC với (O). Chứng minh OM vuông góc với AC
c) Gọi H là giao điểm của AC và OB. Chứng minh HA.HC=HB.HM
d) Chứng minh OABC là hình thoi
Cho C là một điểm nằm trên cung lớn AB của đường tròn (O). Điểm C chia cung lớn AB thành hai cung AC và CB. Chứng rằng cung lớn AB có số đo cung AB = số đo cung AC + số đo cung CB
Hướng dẫn : Xét 3 trường hợp :
a) Tia OC nằm trong góc đối đỉnh của góc ở tâm AOB
b) Tia OC nằm trùng với tia đối của một cạnh của góc ở tâm AOB
c) Tia OC nằm trong một góc kề bù với góc ở tâm AOB
Cho đường tròn tâm O bán kính bằng 3 cm và điểm A Trên đường tròn trên tiếp tuyến tại A với đường tròn qua điểm B sao cho OB = 6 cm tia AB cắt đường tròn tâm O tại C Tính số đo các cung AC
Cho tam giác cân AOB có \(\widehat{AOB}\) = 120°. Vẽ đường tròn (O; OA). Gọi M là một điểm nằm trên đường tròn, biết sđ\(\stackrel\frown{AM}\) = 50°. Tính số đo cung nhỏ BM và số đo cung lớn BM.
cho \(\Delta ABC\) cân nội tiếp đường tròn (O;R) ,\(\widehat{A}< 90^0\) . Gọi H,I lần lượt là trung điểm của AB và AC . Nối OH,OI cắt các cung nhỏ AB,AC lần lượt tại M,N
a) c/m OA\(\perp\)MN
b) \(\Delta ABC\) phải thêm điều kiện gì để OMAN là hình thoi
cho \(\Delta ABC\) cân nội tiếp đường tròn ( O;R) , \(\widehat{A}\) < 90 độ . Gọi H ,I lần lượt là trung điểm của AB và AC . Nối OH,OI cắt các cung nhỏ AB,AC lần lượt tại M,N
a) c/m OA\(\perp\)MN
b) \(\Delta\)ABC phải thêm điều kiện gì để OMAN là hình thoi