đặt A=...
Áp dúng bất đẳng thức bu nhi a ta có
\(A^2\le3\left(1+a^2+2bc+1+b^2+2ac+1+c^2+2ab\right)=3\left[\left(a+b+c\right)^2+3\right]\)
=> \(A^2\le36\Rightarrow A\le6\) (ĐPCM)
dấu = xảy ra <=> a=b=c=1
đặt A=...
Áp dúng bất đẳng thức bu nhi a ta có
\(A^2\le3\left(1+a^2+2bc+1+b^2+2ac+1+c^2+2ab\right)=3\left[\left(a+b+c\right)^2+3\right]\)
=> \(A^2\le36\Rightarrow A\le6\) (ĐPCM)
dấu = xảy ra <=> a=b=c=1
GIÚP EM BÀI NÀY GẤP ĐƯỢC KHÔNG Ạ!!! HIHI
Cho a,b,c>0
CMR
a/((b+c)*sqrt(a^2+2bc))+b/((a+c)*sqrt(b^2+2ac)) + c/((b+c)*sqrt(c^2+2ab) >= 3/(2*sqrt(a^2+b^2+c^2)). ^_^
+) Cho các số dương a,b,c thỏa mãn: a+2b+3c=3
CM: \(\sqrt{\dfrac{2ab}{2ab+9c}}+\sqrt{\dfrac{2bc}{2bc+a}}+\sqrt{\dfrac{ac}{ac+2b}}\le\dfrac{3}{2}\)
+) Cho a,b,c >0 và a+b+c≤3
Tìm min P\(=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
Tìm GTLN của B= \(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ac+3a^2}\)
Biết a,b,c >=0 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)3
1. Cho a,b >0
Tìm min: Q= \(\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{a^2}}\)
2. Cho a,b,c >0 và a+b+c ≤ 1
Tìm min P=\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\)
Tìm GTLN của
\(P=\dfrac{a}{\sqrt{1+2bc}}+\dfrac{b}{\sqrt{1+2ca}}+\dfrac{c}{\sqrt{1+2ab}}\)
với a,b,c là các số lớn hơn 0 thỏa mãn điều kiện : \(a^2+b^2+c^2=1\)
Cho a,b,c là 3 số thực dương thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Tìm GTLN của biểu thức P=\(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ac+2a^2}}\)
So tài nào Incur =) Mong các bạn + gviên đừng trả lời
\(Cho\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}}.\)
Tìm \(maxP=\sqrt{1+a^2+2bc}+\sqrt{1+b^2+2ca}+\sqrt{1+c^2+2ab}\le6\)
Nhân tiện nói nội quy luôn : mỗi người sẽ ra 3 bài toán khác nhau để đố người còn lại , khi nào làm xong 1 bài thì đối thủ sẽ ra đề tiếp
Cho a,b>0 thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\).Tìm GTNN của
A=\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^3+2bc+c^3}+\sqrt{c^3+2ca+a^3}\)
cho các số thực a,b,c không âm thỏa mãn không có hai số nào đồng thời =0và a2+b2+c2=2(ab+bc+ca).CMR
\(\sqrt{\frac{2ab}{a^2+b^2}}\)+\(\sqrt{\frac{2bc}{b^2+c^2}}\)+\(\sqrt{\frac{2ac}{a^2+c^2}}\)\(\ge\)1