Ta có :
\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=...=\frac{a2016}{a2017}=\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\)
vì \(\frac{a1}{a2}=\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\)
\(\frac{a2}{a3}=\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\)
...
\(\frac{a2016}{a2017}=\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\)
\(\Rightarrow\frac{a1}{a2}.\frac{a2}{a3}.\frac{a3}{a4}...\frac{a2016}{a2017}=\frac{\left(a1+a2+a3+...+a2016\right)^{2016}}{\left(a2+a3+a4+...+a2017\right)^{2016}}\)
\(\Rightarrow\frac{a1}{a2017}=\left(\frac{a1+a2+a3+...+a2016}{a2+a3+a4+...+a2017}\right)^{2016}\)
Ta có a1/a2=a2/a3=a3/a4=...=a2016/a2017
=> a1/a2=(a1+a2+a3+...+a2016)
/(a2+a3+a4+...+a2017)
=> a12016/a22016 =(a1+a2+a3+...+a2016)2016 /(a2+a3+a4+...+a2017)2016 (1)
Ta lại có a1/a2=a2/a3=a3/a4=...=a2016/a2017
=> a12016/a22016= a1/a2.a2/a3.a3/a4. ... .a2016/a2017=a1/a2017 (2)
Từ (1) và (2) => đpcm