\(A=\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{80}\)
\(\Rightarrow A=\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{80}\right)-\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{40}\right)\)
\(\Rightarrow A=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{80}\right)-\left(2\cdot\dfrac{1}{2}+2\cdot\dfrac{1}{4}+...+2\cdot\dfrac{1}{80}\right)\)
\(\Rightarrow A=\left(\dfrac{1}{1}+\dfrac{1}{2}-2\cdot\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-2\cdot\dfrac{1}{4}+...+\dfrac{1}{80}-2\cdot\dfrac{1}{80}\right)\)
\(\Rightarrow A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{79}-\dfrac{1}{80}\)
\(\Rightarrow A=\left(\dfrac{1}{1}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{79}-\dfrac{1}{80}\right)\)
\(\Rightarrow A=\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{79}-\dfrac{1}{80}\right)\)
Ta thấy các biểu thức đằng sau phân số \(\dfrac{1}{2}\) đều dương \(\Rightarrow A>\dfrac{1}{2}\)