Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tường Nguyễn Thế

Cho 3 số a, b, c thoả mãn \(0\le a,b,c\le2\)và a+b+c=3. Chứng minh rằng: \(a^3+b^3+c^3\le9\)

๖Fly༉Donutღღ
25 tháng 2 2018 lúc 9:27

a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c² -ab-bc-ca) ; thay giả thiết a+b+c = 3 ta có: 

a³+b³+c³ = 3(a²+b²+c² -ab-bc-ca + abc) (1) 

* từ giả thiết 0 ≤ a, b, c ≤ 2 => (2-a)(2-b)(2-c) ≥ 0 

⇔ 8 -4a-4b-4c + 2ab+2bc+2ca -abc ≥ 0 (lại thay a+b+c = 3) 

⇒ abc ≤ 2ab+2bc+2ca - 4 (2)

Dấu '=' khi có 1 số = 2 

thay (1) vào (2) ta có: 

a³+b³+c³ ≤ 3(a²+b²+c² +ab+bc+ca - 4) = 3[(a+b+c)² - ab-bc-ca -4] = 3(5-ab-bc-ca) (3) 

Mặt khác cũng từ (2) ta có: 2(ab+bc+ca) ≥ abc+4 ≥ 4 

⇒ -ab-bc-ca ≤ -2 (dấu "=" khi có 1 số = 0) thay vào (3) ta có 

a³+b³+c³ ≤ 3(5-ab-bc-ca) ≤ 9 (đpcm) 

Mới lớp 8 nên không hiểu biết rộng về lớp 9 sai bỏ qua 


Các câu hỏi tương tự
 ☘ Nhạt ☘
Xem chi tiết
Kiều Trang
Xem chi tiết
Dương Thiên Tuệ
Xem chi tiết
Lại Minh Sang
Xem chi tiết
Nguyệt Hà
Xem chi tiết
ミ★ɦυүềη☆bùї★彡
Xem chi tiết
Nguyễn Quốc Khánh
Xem chi tiết
Nguoi Ngu
Xem chi tiết
⭐Hannie⭐
Xem chi tiết