Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài DE, \(D\in\left(O\right),E\in\left(O'\right)\). Kẻ tiếp tuyến chung trong tại A, cắt DE ở I. Gọi M là giao điểm của OI và AD, N là giao điểm của O'I và AE
a) Tứ giác AMIN là hình gì ? Vì sao ?
b) Chứng minh hệ thức IM.IO = IN.IO'
c) Chứng minh rằng OO' là tiếp tuyến của đường tròn có đường kính là DE
d) Tính độ dài DE biết rằng OA = 5cm, O'A = 3,2cm
Cho hai đường tròn tâm O và O’ tiếp xúc ngoài tại H. Kẻ tiếp tuyến chung ngoài AB, điểm A thuộc tâm O và B thuộc tâm O’ . Tiếp tuyến chung trong tại H cắt tiếp tuyến chung ngoài AB tại M a, Chứng minh rằng góc AHB bằng 90° b, Tính góc OMO’ c, Tính AB biết OH=9cm ,O’H =4cm
: Cho đường tròn (O; R) có đường kính AC và dây cung BC = R. a) Tính số đo của  và độ dài dây AB theo R. b) Đường thẳng qua O và vuông góc với AB tại H cắt tiếp tuyến tại A của đường tròn (O) ở D. Chứng minh DB là tiếp tuyến của đường tròn (O). c) Vẽ dây BE ⊥ AC tại M . Chứng minh tứ giác OBCE là hình thoi và tính diện tích tứ giác OBCE theo R. d)Tiếp tuyến tại C của (O) cắt DB tại K . Chứng minh AK, CD, BE đồng quy. MK CHỈ CẦN CÂU C THÔI Ạ
Cho hai đường tròn (O; 6cm) và (O' 4cm) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈ (O), C ∈ (O'). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I.
a) Chứng minh ΔOIO' là tam giác vuông
b) Chứng minh OO' là tiếp tuyến của đường tròn ngoại tiếp ΔABC
c) Tính diện tích tứ giâc OBCO'
Cho hai đường tròn (O) và (O') tiếp xúc ngoài ở A . Đường nối tâm OO' cắt đường tròn (O) ở B , cắt đường tròn (O') ở C . DE là tiếp tuyến chung ngoài của hai đường tròn , D thuộc (O) và E thuộc (O') . Gọi M là giao điểm của hai đường thẳng BD và CE . Chứng minh :
a) MA là tiếp tuyến chung của hai đường tròn (O) và (O')
b) MD.MB=ME.MC
cho đường tròn (O) và (O') ngoài nhau. kẻ tiếp tuyến chung ngoài AB của 2 đường tròn (A thuộc (O), B thuộc (O')). vẽ các tiếp tuyến chung trong của 2 đường tròn lần lượt cắt AB tại C và D. CMR AC = BD
Cho đường tròn (O;R) và một điểm A sao cho OA = R √ 2. Vẽ các tiếp tuyến AB, ACvoiws đường tròn. Một góc xOy= 45 độ cắt đoạn thẳng AB và AC lần lượt tại D và E, DE là tiếp tuyến của đường tròn (O). Chứng minh 2/3 R<DE<R. Giúp mình với.
Cho hai đườngtròn (O; R) và (O'; R') tiếp xúc ngoài tại A (R > R'). Vẽ các đường kính AOB, AO'C. Dây DE của đường tròn (O) vuông góc với BC tại trung điểm K của BC.
a) Chứng minh rằng tứ giác DBCE là hình thoi
b) Gọi I là giao điểm của EC và đường tròn (O'). Chứng minh rằng ba điểm D, A, I thẳng hàng
c) Chứng minh rằng KI là tiếp tuyến của đường tròn (O')
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. BC là tiếp tuyến chung ngoài, \(B\in\left(O\right),C\in\left(O'\right)\). Tiếp tuyến chung tại A cắt BC ở điểm M. Gọi E là giao điểm của OM và AB, F là giao điểm của O'M và AC. Chứng minh rằng :
a) Tứ giác AEMF là hình chữ nhật
b) ME . MO = MF . MO'
c) OO' là tiếp tuyến của đường tròn có đường kính là BC
d) BC là tiếp tuyến của đường tròn có đường kính là OO'