a, Với m =1 , pt thành:
y = \(\dfrac{-2}{3}x-\dfrac{1}{3}\)(d')
Hoành độ giao điểm là nghiệm của phương trình:
\(-x+4=\dfrac{-2}{3}x-\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{-1}{3}x=\dfrac{-13}{3}\Leftrightarrow x=13\)
thay x = 13 vào (d) ta được \(y=-9\)\(\Rightarrow A\left(13;-9\right)\)
vậy điểm \(A\left(13;-9\right)\)là giao điểm của (d) và (d')
b, Gọi điểm B(x1;y1) là giao điểm của (d) và (d')
Để (d) và (d') cắt nhau tại góc phần tư thứ 1
\(\Rightarrow\left\{{}\begin{matrix}x_1>0\\y_1>0\end{matrix}\right.\) (1)
Lại có x1 là nghiệm của phương trình: \(-x_1+4=\dfrac{-2}{3}x_1+\dfrac{m}{3}\)
\(\Leftrightarrow\dfrac{-1}{3}x_1=\dfrac{m}{3}-4\) \(\Leftrightarrow x_1=-m+12\) (2)
Thay x1 = -m +12 vào (d) ta được: \(y_1=-\left(-m+12\right)+4\Leftrightarrow y_1=m-8\) (3)
Thay (2) và (3) vào hệ bất phương trình (1) ta được
\(\left\{{}\begin{matrix}-m+12>0\\m-8>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 12\\m>8\end{matrix}\right.\)\(\Leftrightarrow8< m< 12\)
Vậy \(8< m< 12\) thì (d) cắt (d') tại góc phần tư thứ 1
chúc bạn học tốt☺