Cho 2 đa thức \(P\left(x\right);Q\left(x\right)\) thỏa mãn \(P\left(x^3\right)+x.Q\left(x^3\right)\) chia hết cho \(x^2+x+1\). Chứng minh rằng đa thức \(P\left(x\right)\) chia hết cho đa thức \(x-1\).
P/s: Em xin phép nhờ quý thầy cô giáo cùng các bạn yêu toán giúp đỡ em tham khảo với ạ.
Em cám ơn nhiều ạ!
\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)
\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\)
Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\) với mọi x nguyên
\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên
Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)
\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)