Cho a, b, c>0; a+b+c=1.Tìm GTNN của \(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}\)
Cho a,b,c > 0 thỏa mãn : a+b+c = 1
Tìm GTNN của Q= \(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}\)
1/Cho a,b,c≥0 và \(a^2+b^2+c^2\le abc\). Tìm GTLN của
M=\(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ba}\)
2/Cho a,b,c>0 thỏa mãn 13a+5b+12c=9. Tìm GTLN của
N=\(\frac{ab}{2a+b}+\frac{3bc}{2b+c}+\frac{6ca}{2c+a}\)
3/Cho a,b,c>0 thỏa mãn a+b+c=3. Tìm GTNN của
P=\(\frac{1}{2+a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\)
4/Cho các số thực a,b,c thỏa mãn ab+7bc+ca=188.
Tìm GTNN của P=\(5a^2+11b^2+5c^2\)
Ai giải được câu nào giải hộ mình vs ạ!!!
Cho a,b,c>0 và a+b+c=1
Tìm GTNN của \(M=\frac{9}{1-2\left(ab+bc+ca\right)}+\frac{2}{abc}\)
Tìm GTLN và GTNN (nếu có) của M = \(\frac{4x+1}{x^2+3}\)
Cho a,b,c ? 0 và a + b + c = 3. Tìm GTNN của A = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1. CHo 2 số x,y > 0 thõa mãn x + y = 1. TÌm giá trị nhỏ nhất của A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}+3xy\)
2. Cho a,b,c > 0 thõa mãn abc = 1. CNR: \(\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge1\)
3. Cho a,b,c > 0 thõa mãn : a +b + c \(\le\)\(\sqrt{3}\)
TÌm GTNN A = \(\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\)
1, cho a>0 b>0 thỏa mãn a+b=5.Tòm GTNN của P=\(\frac{1}{a}\)+\(\frac{1}{b}\)
2/cho a>0,b>0,c>0 và a+b+c=1 Tìm GTNN của A=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cho a,b,c>0 và a+b+c<=3/2 . Tìm GTNN của biểu thức:
\(S=a^2+b^2+c^2+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1 . Chứng minh với mọi a , b , c > 0 ta luôn có :
\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{27}{2\left(a+b+c\right)^2}\)
2 . Cho a , b , c > 0 thỏa mãn abc=1
Tìm GTNN của \(B=\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+c^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ac}\)