Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Lĩnh

Câu 4(1,5điểm): Cho hình vuông ABDC tâm O cạnh bằng a.

a) Tính độ dài của :vector BD– vector BC.

b) Chứng minh: vector MA+vector MB+ vector MC+vector MD=4 vector MO

c) Tìm tập hợp tất cả các điểm M sao cho |vector MA+vector MB+vector MC|=1.

Nguyễn Việt Lâm
26 tháng 11 2021 lúc 19:47

a.

\(\left|\overrightarrow{BD}-\overrightarrow{BC}\right|=\left|\overrightarrow{BD}+\overrightarrow{CB}\right|=\left|\overrightarrow{CD}\right|=CD=a\)

b.

Do O là tâm hình vuông \(\Rightarrow\) O đồng thời là trung điểm AC và BD

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0}\\\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}\end{matrix}\right.\)

Do đó:

\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)

\(=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}=4\overrightarrow{MO}+\overrightarrow{0}+\overrightarrow{0}=4\overrightarrow{MO}\)

c. Đề bài câu này thật kì quặc, đề cho cạnh hình vuông bằng a nhưng lại yêu cầu tìm quỹ tích có tổng độ dài bằng 1 đơn vị.

Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=1\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=1\)

\(\Leftrightarrow\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=1\)

\(\Leftrightarrow\left|3\overrightarrow{MG}\right|=1\)

\(\Leftrightarrow3MG=1\)

\(\Leftrightarrow MG=\dfrac{1}{3}\)

Tập hợp M là đường tròn tâm G bán kính \(\dfrac{1}{3}\)


Các câu hỏi tương tự
Ngọc Anh
Xem chi tiết
Nguyễn Đức Hiển
Xem chi tiết
Tuệ Nhi
Xem chi tiết
Nguyễn văn Hải
Xem chi tiết
Nhi Vũ
Xem chi tiết
Ngọc Anh
Xem chi tiết
Trần Đình Triều Đại
Xem chi tiết
Qua Qua Lee
Xem chi tiết
Pham Trong Bach
Xem chi tiết