bình phương thiếu của 1 tổng là \(a^2+ab+b^2\)
bình phương thiếu của 1 hiệu là \(a^2-ab+b^2\)
Chứng minh \(a^2+ab+b^2\ge0\)
Ta có: \(a^2+ab+b^2=a^2+2.a.\dfrac{1}{2}b+\left(\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\)
\(=\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\ge0\)
Tương tự cho trường hợp còn lại