a) Xét ΔPHD vuông tại H và ΔPED vuông tại E có
PD chung
PH=PE(gt)
Do đó: ΔPHD=ΔPED(cạnh huyền-cạnh góc vuông)
b) Ta có: ΔPHD=ΔPED(cmt)
nên DH=DE(hai cạnh tương ứng)
mà DE<DQ(ΔDEQ vuông tại E có QD là cạnh huyền nên DQ là cạnh lớn nhất)
nên DH<DQ
a) Xét ΔPHD vuông tại H và ΔPED vuông tại E có
PD chung
PH=PE(gt)
Do đó: ΔPHD=ΔPED(cạnh huyền-cạnh góc vuông)
b) Ta có: ΔPHD=ΔPED(cmt)
nên DH=DE(hai cạnh tương ứng)
mà DE<DQ(ΔDEQ vuông tại E có QD là cạnh huyền nên DQ là cạnh lớn nhất)
nên DH<DQ
Bài 6. Cho tam giác ABC vuông tại A a) Nếu AB = 9cm; BC = 15 cm. Tính AC và so sánh các góc của tam giác ABC. b) Trên tia đối của tia CA lấy điểm D sao cho CA = CD , Qua D kẻ đường thẳng d vuông góc với AD. Gọi E là giao của BC và d. Qua C kẻ đường thẳng vuông góc với BE cắt đường thẳng d tại F. Chứng minh tam giác ABC- tam giác DEC và tam giác BEF cân. c) So sánh BF và AD d) Tìm điều kiện của tam giác ABC để tam giác EFB đều
Cho tam giác abc vuông tại a có ab = 3 cm, bc = 5 cm. Lấy điểm D trên cạnh bc sao cho bd=ba. Kẻ đường thẳng vuông góc với bc tại D cắt ac tại E
a) tính độ dài đoạn thẳng ac
b) Chứng minh BE là tia phân giác của abc
c) so sánh ae và ec
d) chứng minh be là đường trung trực của ad
Vẽ hình và giải giúp mình nha
cảm ơn
Cho tam giác ABC nhọn. Đường cao AH. Qua H kẻ Hx vuông góc với AB tại I. Trên tia đối của IH lấy điểm D sao cho IH = ID. Từ H kẻ HK vuông góc HC tại K. Trên tia đối của tia AH lấy điểm E sao cho KH = KE. a) Chứng minh góc DAE = 2 lần góc BAC. b) Nối DE cắt AB và AC theo thứ tự tại M và N. c) Chứng minh ba đường thẳng AH, CM, BH đồng quy tại 1 điểm.
Cho tam giác MNP vuông tại M, có góc p < góc n, đường cao MK. Trên nửa mặt phẳng có bờ là đường thẳng NP không chứa điểm M, vẽ tia Nx sao cho tg pnm=pnx. Nx cắt MK kéo dài tại Q.
a) Chứng minh: MNK = QNK .
b) So sánh KM và KN.
. Cho tam giác EFG vuông tại E, kẻ đường cao EH. Trên cạnh EG lấy điểm M sao cho EH = EM. Kẻ MP vuông góc với EG tại M, MP cắt FG tại P. Hãy chọn câu đúng?
A.
B. HM là đường trung trực của đoạn thẳng EP.
C. GP = GM.
D. Cả A, B, C đều đúng.
Cho tam giác ABC vuông tại B có góc A bằng 600. Vẽ đường cao BH. Trên tia đối của tia HB lấy điểm D sao cho HB = HD. Kẻ BM vuông góc với DC tại M.
a) Chứng minh tam giác ABD cân.
b) Chứng minh CB = CD.
c) Gọi I là giao điểm của BM và CH. Chứng minh DI vuông góc với BC.
d) Chứng minh CI = 2IH.
Cho Tam giác ABC vuông cân tại A. Điểm E nằm giữa A và C, kẻ tia Ex sao cho EB là tia phân giác của góc AEx. Tia Ex cắt đường thẳng vuông góc với AC kẻ từ C tại K. Chứng minh EK<AB
Cho ABC vuông tại B có 60o A , phân giác góc BAC cắt BC ở D. Kẻ DH vuông góc với AC ( H thuộc AC) a. Chứng minh ABD AHD b. Chứng minh HA HC c. So sánh DC và AB d. Gọi I là giao điểm của HD và AB, lấy E là trung điểm của CI. Chứng minh A,D,E thẳng hàng
Cho tam giác ABC vuông tại A (AB<AC) Tia phân giác của góc ABC cắt cạnh AC tại D. Từ D kẻ DH vuông góc với AC (H thuộc AC).
A/ Chứng minh: tam giác ABD= tam giác HBD.
B/ Đường thẳng HD cắt đường thẳng BA tại K. Chứng minh: Tam giác BKC.
C/ Gọi M là trung điểm của KC. Chứng minh 3 điểm B, D, M thẳng hàng.