Biết \(\lim\limits_{x->+\infty}\) \(\left(\sqrt{25x^2+4\sqrt{2}+5}-5x\right)=\dfrac{a\sqrt{b}}{c}\) trong đó a,b,c là các số nguyên duơng, phân số \(\dfrac{a}{c}\) tối giản và \(a>1\). Tính \(S=a^2+b^2+c^2\)
lim(x-->1)\(\frac{x^2+ax+b}{x^2-1}=-\frac{1}{2}\)
Tính tổng S=\(a^2+b^2\)
Cho \(X\subseteqℕ^∗\) và thỏa mãn 2 điều kiện sau:
i) \(\exists x,y\in X:gcd\left(x,y\right)=1\)
ii) \(\forall a,b\in X:a+b\in X\)
Xét \(T=ℕ^∗\backslash X\), đặt \(S\left(T\right)=\sum\limits^{ }_{a\in T}a\)
a) CMR T là tập hữu hạn
b) CMR \(\left|T\right|\ge\sqrt{S\left(T\right)}\)
(Câu a mình làm được rồi nên các bạn giúp mình làm câu b nhé. Thanks in advance.)
Biết rằng lim x → ± ∞ a ( 2 x 3 - x 2 ) + b ( x 3 + 5 x 2 - 1 ) - c ( 3 x 3 + x 2 ) a ( 5 x 4 - x ) - b x 4 + c ( 4 x 4 + 1 ) + 2 x 2 + 5 x = 1 , với a , b , c ∈ R . Tính S = 8a +6b-3c
A. -1
B. 2
C. 1
D. 0
Biết rằng phương trình 2 - x + 2 + x - 4 - x 2 = m có nghiệm khi m thuộc [a;b] với a,b ∈ ℝ . Khi đó giá trị của T = ( a + 2 ) 2 + b là?
A. T = 3 2 + 2
B. T = 6
C. T = 8
D. T = 0
Cho y=1/3(m-1)x³-(m-1)x²+(m+3)x-2. Tìm m để a)y'=0 có 2 nghiệm phân biệt cùng dấu b)y'=0 có 2 nghiệm thoả mãn x1²+x2²=4
tìm tham số thỏa mãn yêu cầu bài toán:
a) tìm m biết đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\) có đường tiệm cận ngang đi qua điểm A (-1;3)
b) biết rằng đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\) có đường tiệm cận ngang là đường thẳng y = -2
tìm tham số thỏa mãn yêu cầu bài toán:
a) tìm m biết đồ thị hàm số \(y=\dfrac{\left(m-5\right)x-1}{2x+1}\) có đường tiệm cận ngang đi qua điểm M (-2;1)
b) biết rằng đồ thị hàm số \(y=\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\) có đường tiệm cận ngang là đường thẳng y = 1
a) lim\(\dfrac{x^2-1}{x+1}\)(x-->-3)
b) lim\(\dfrac{4-x^2}{x+2}\)(x-->-2)
a) tính gtrị của biểu thức A = \(\sqrt{3}+\sqrt{12}-\sqrt{27}-\sqrt{36}\)
b) cho bt B = \(\dfrac{2}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x-5}}{\sqrt{x\left(\sqrt{x-1}\right)}}\) với x > 0 và x \(\ne\) 1 . rút gọn bt và tìm x để B = 2