2. Cho nửa đường tròn(O,R) đường kính AB . Từ một điểm M trên nửa đường tròn , vẽ tiếp tuyến xy .Kẻ AD và BC cùng vuông góc với xy (với D và C thuộc xy)
a, chứng minh rằng MC=MD và AD+BC=2R
b, chứng minh đường tròn đường kính CD tiếp xúc với AB
c, tìm vị trí điểm M trên nửa đường tròn (O) sao cho MA.MB đạt giá trị lớn nhất
cho đoạn thẳng AB , trên cùng một nửa mặt phẳng bờ AB vẽ nửa đường tròn đường kính AB và các tiếp tuyến Ax , By . Qua điểm M thuộc nửa đường tròn này ( M khác A, B) vẽ tiếp tuyến Ax , By theo thứ tự tại E và F , VẼ mh VUÔNG GÓC VỚI aB TẠI H . gọi N là giao điểm của các tia BM và Ax , gọi G là giao điểm thứ 2 của À với nửa đường tròn O . chứng minh NG là tiếp tuyến của đường tròn O
a, CM : góc COD = 90o
b, CM : CD = AC + BD
c, gọi H là hình chiếu của M trên AB , I là giao điểm BC và MH . CM : IM = IH
cho nửa đg tròn (O;R) đường kính AB. Vẽ tiếp tuyến Ax (Ax và nửa đg tròn cùng thuộc nửa mặt phẳng bở AB ) , trên Ax lấy điểm P sao cho AP > R . Vẽ tiếp tuyến PE với nửa đg tròn (E là tiếp điểm ) đường thẳng PE giao AB tại F
a, CM : P,A,E,O cùng thc 1 đường tròn
b, CM: PO // BE
c, qua O kẻ đường thẳng vuôn góc OP cắt PE tại M : CM: EM.PF=PE.MF
Bài IV (3,5 điểm) Cho nửa đường tròn tâm O, bán kính R, đường kính AB. Điểm C thuộc đoạn AB (C khác B;A). Trên cùng nửa mặt phẳng bờ AB có chứa nửa (O;R). Vẽ nửa đường tròn tâm I, đường kính AC và nửa đường tròn tâm J, đường kính BC. Qua C kẻ đường thẳng vuông góc với AB cắt (O;R) tại D. DA cắt nửa đường tròn tâm I tại M, DB cắt nửa đường tròn tâm J tại N
1) Chứng minh rằng: Tứ giác MDNC là hình chữ nhật
2) Chứng minh rằng: Tứ giác AMNB nội tiếp.
3) Chứng minh rằng: OD vuông góc MN
4) Tìm vị trí của C trên AB để bán kính đường tròn ngoại tiếp tứ giác AMNB lớn nhất.
1. Cho nửa đường tròn tâm O đường kính AB. Vẽ các tiếp tuyến Ax, By ( Ax, By cùng thuộc nửa mặt phẳng chứa nửa đường tròn bờ AB). Gọi M là điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By tại C và D.
a) Chứng minh đường tròn đường kính CD tiếp xúc với AB.
b) Tìm vị trí của điểm M để hình thang ABDC có chu vi nhỏ nhất.
c) Kẻ MH⊥AB tại H. Chứng minh rằng BC đi qua trung điểm I của MH.
(Chỉ cần làm câu c thôi mấy câu để có số liệu thôi)
Trong mặt phẳng tọa độ Oxy , cho parabol (P) : y= -1/2 x^2
a) Vẽ parabol (P)
b) Gọi M là điểm thuộc (P) có hoành độ xM = 2 . Viết pt đường thẳng đi qua M và cắt hai trục tọa độ tại 2 điểm A và B sao cho OA =OB
(Giúp em câu c với ạ)
Cho nửa (O) đường kính AB, C thuộc nửa (O) sao cho CA>CB. 1 điểm I thuộc (O), OI vuông góc với AB cắt dây AC tại D. Đường thẳng d là tiếp tuyến tại C của nửa (O). Đường thẳng qua D và song song với AB cắt đường thẳng d ở điểm E.
a) Chứng minh: Tứ giác BCDO nội tiếp và AC.AD=AO.AB
b) Chứng minh: AC song song với OE
c) Gọi H là chân đường cao hạ từ C đến AB. Tìm vị trí của điểm C để HD vuông góc với AC
(Giúp em câu c với ạ)
Cho nửa (O) đường kính AB, C thuộc nửa (O) sao cho CA>CB. 1 điểm I thuộc (O), OI vuông góc với AB cắt dây AC tại D. Đường thẳng d là tiếp tuyến tại C của nửa (O). Đường thẳng qua D và song song với AB cắt đường thẳng d ở điểm E.
a) Chứng minh: Tứ giác BCDO nội tiếp và AC.AD=AO.AB
b) Chứng minh: AC song song với OE
c) Gọi H là chân đường cao hạ từ C đến AB. Tìm vị trí của điểm C để HD vuông góc với AC