a/ \(\sqrt{2x^2-9}=x\)
\(\Leftrightarrow2x^2-9=x^2\)
\(\Leftrightarrow2x^2-x^2-9=0\)
\(\Leftrightarrow x^2-9=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy...
b/ \(\sqrt{x^2-8x+16}=4\)
\(\Leftrightarrow\sqrt{\left(x-4\right)^2}=4\)
\(\Leftrightarrow\left(x-4\right)^2=4\)
\(\Leftrightarrow\left(x-4\right)^2-4=0\)
\(\Leftrightarrow\left(x-4-2\right)\left(x-4+2\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-6=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)
Vậy....
c/ ĐK : \(x\ge0\)
Ta có :
\(\sqrt{4x}=\sqrt{5x}\)
\(\Leftrightarrow4x=5x\)
\(\Leftrightarrow5x-4x=0\)
\(\Leftrightarrow x=0\)
Vậy....
a) ĐKXĐ: \(2x^2-9\ge0\Leftrightarrow2x^2\ge9\Leftrightarrow x^2\ge\frac{9}{2}\Leftrightarrow\left[{}\begin{matrix}x\ge\frac{3}{\sqrt{2}}\\x\le\frac{-3}{\sqrt{2}}\end{matrix}\right.\)
Ta có: \(\sqrt{2x^2-9}=x\)
\(\Leftrightarrow2x^2-9=x^2\)
\(\Leftrightarrow2x^2-9-x^2=0\)
\(\Leftrightarrow x^2-9=0\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-3\left(nhận\right)\end{matrix}\right.\)
Vậy: S={3;-3}
b) ĐKXĐ: \(x\in R\)
Ta có: \(\sqrt{x^2-8x+16}=4\)
\(\Leftrightarrow\sqrt{\left(x-4\right)^2}=4\)
\(\Leftrightarrow\left|x-4\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=-4\\x-4=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=8\left(nhận\right)\end{matrix}\right.\)
Vậy: S={0;8}
c) ĐKXĐ: \(x\ge0\)
Ta có: \(\sqrt{4x}=\sqrt{5}\)
\(\Leftrightarrow4x=5\)
hay \(x=\frac{5}{4}\)(nhận)
Vậy: \(S=\left\{\frac{5}{4}\right\}\)