bai 1 :
a/ kẻ AH vuông góc với BC
tam giác AHB có góc H=90o
=> sinB=\(\dfrac{AH}{AB}\)
=> AH=sinB.AB=sin60o.16 = \(8\sqrt{3}\) cm
cosB=\(\dfrac{BH}{AB}\)=> BH=cosB.AB=cos60o.16=8 cm
tam giác AHC vuông tại H
=> HC=\(\sqrt{AC^2-AH^2}\)=\(\sqrt{14^2-\left(8\sqrt{3}\right)^2}\)=2 cm
=> BC=BH+HC=8+2=10 cm
b, \(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.8\sqrt{3}.10=40\sqrt{3}\) (cm2)
Bài 1:
a/ \(cotgB=\dfrac{AB}{AC}\Rightarrow AB=AC.cotgB=15.cotg50^o\) =12,6 (cm)
\(sinB=\dfrac{AC}{BC}\Rightarrow BC=\dfrac{AC}{sinB}=\dfrac{15}{sin50^o}=19,6\) (cm)
b/Ta có \(ACD=BCD=\dfrac{90-B}{2}=\dfrac{90-50}{2}=20^o\)
Xét \(\Delta\)vuông ACD có:
\(\text{cosACD}=\dfrac{AC}{CD}\Rightarrow CD=\dfrac{AC}{cosACD}=\dfrac{15}{cos20^o}=16\) (cm)