\(A=\frac{a^2}{a+b}+\frac{b^2}{c+a}+\frac{c^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{6}{2}=3..\)
\(A=\frac{a^2}{a+b}+\frac{b^2}{c+a}+\frac{c^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{6}{2}=3..\)
chóa,b,c là các số thực dương thỏa mãn a+b+c=6 tim GTNN a^2/(a+b) + b^2/(c+a) + c^2/(b+c)
Cho a+b+c=2
Tim gtnn của A= \(\sqrt{a^2+b^2+c^2}+\frac{ab+bc+ca}{2}+\frac{1}{a^2+b^2+c^2}\)
cho a,b,c la cac so thoa man a^2+b^2+c^2=<8 tim GTNN cua xy+yz+2xz
cho a,b,c là các số thực thỏa mãn \(a\ge b\ge c\),\(a+b+c=0\),\(a^2+b^2+c^2=6\)
tìm GTNN của a+b
cho tam giac ABC vuong tai A co BC=a AC=b AB=c
tim GTNN cua M = 8a^2(1/b^2 +1/c^2) + (b+c)/a +2016
Cho a, b, c > 0 thoa man a + b + c = 3.
Tim GTNN : \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\)
cho a,b,c >0 va a+b+c>=6.tim GTNN cua A= 5a+6b+7c+1/a+8/b+27./c
1.Tim a de \(N=\frac{6}{M}\in Z\)biet \(M=\frac{a+2\sqrt{a}+1}{\sqrt{a}}\)
2.tim nghiem nguyen to cua pt:\(x^2-2y^3=1\)
3.Cho a, b,c la 3 canh cua tam giac.CM:\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\subseteq a^3+b^3+c^3\)
4.ve do thi ham so \(y=\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}\)dung do thi. tim GTLN,GTNN.
Bài toán:
a) Cho các số thực dương a,b,c thỏa mãn a+b+2c=6. Tìm GTNN của A= a^2+ b^2+ c^2 + 1/a^2+b^2+c^2
b) Cho các số thực dương a,b,c thỏa mãn Biết rằng 1 bé hơn hoặc bằng a;b;c bé hơn hoặc bằng 2 và a+b+c=5
tìm GTLN, GTNN của B=a^3+b^3+c^3
Giúp mình giải bài này với!!!!!!!!!!!!!!!!