Cho a,b,c>0. CMR
\(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)
Cho a, b, c là các số thực dương.
Chứng minh: \(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)
Cho `a,b,c>0`.
`CMR:a/sqrt{a^2+8bc}+b/sqrt{b^2+8ac}+c/sqrt{c^2+8ab}>=1`
cho a,b,c>0; \(a^2+b^2+c^2=3\)
cmr
\(\frac{a^2+3ab+b^2}{\sqrt{6a^2+8ab+11b^2}}+\frac{b^2+3bc+c^2}{\sqrt{6b^2+8bc+c^2}}+\frac{c^2+3ca+a^2}{\sqrt{6c^2+8ca+11a^2}}< =3\)
cho a;b;c là các số thực dương thỏa mãn \(a^2+b^2+c^2=\frac{1}{3}\)CMR:\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}\ge a+b+c\)
Chứng minh rằng:\(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\) với \(\forall a,b,c>0\)
Các chú cứ bình tĩnh mà làm:v
1. Chứng minh rằng, với mọi a,b, c, x, y, z ta có:
\(ax+by+cz+\sqrt{\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)}\ge\frac{2}{3}\left(a+b+c\right)\left(x+y+z\right)\)
2. Cho a, b, c > 0. Chứng minh rằng:
\(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)
Ngày mai đổi sang đăng các bài ôn thi HSG @@. Các em nhớ vào làm nha!
Các bạn trình bày chi tiết hộ mk nhé. Lm đc bài nào thì lm. Xin cảm ơn
Bài 1:
cho a,b,c > 0
Chứng minh \(\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)\) lớn hơn hoặc bằng \(abc\left(a+2b\right)\left(c+2a\right)\left(b+2c\right)\)
Bài 2
Cho a,b,c > 0
Chứng minh \(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\)lớn hơn hoặc bằng 1
Cho a,b,c là các số thực dương thỏa mãn \(a^2+b^2+c^2=3\)
CMR: \(\frac{a^2+3ab+b^2}{\sqrt{6a^2+8ab+11b^2}}+\frac{b^2+3bc+c^2}{\sqrt{6b^2+8bc+11c^2}}+\frac{c^2+3ca+a^2}{\sqrt{6c^2+8ca+11a^2}}\le3\)
Các bạn giải hộ tớ bài này nhé! Cảm ơn rất nhiều!