\(9^7+81^4-27^5\)
\(=\left(3^2\right)^7+\left(3^4\right)^4-\left(3^3\right)^5\)
\(=3^{14}+3^{16}-3^{15}\)
\(=3^{14}.\left(1+3^2-3\right)\)
\(=3^{14}.7⋮7\)
=> đpcm
\(25^{25}+5^{49}-125^{16}\)
\(=\left(5^2\right)^{25}+5^{49}-\left(5^3\right)^{16}\)
\(=5^{50}+5^{49}-5^{48}\)
\(=5^{48}.\left(5^2+5-1\right)\)
\(=5^{48}.29⋮29\)
=> đpcm
Bài làm :
\(\text{1) }9^7+81^4-27^5\)
\(=\left(3^2\right)^7+\left(3^4\right)^4-\left(3^3\right)^5\)
\(=3^{14}+3^{16}-3^{15}\)
\(=3^{14}\left(1+3^2-3\right)\)
\(=3^{14}.7⋮7\)
=> Điều phải chứng minh
\(\text{2)}25^{25}+5^{49}-125^{16}\)
\(=\left(5^2\right)^{25}+5^{49}-\left(5^3\right)^{16}\)
\(=5^{50}+5^{49}-5^{48}\)
\(=5^{48}\left(5^2+5-1\right)\)
\(=5^{48}.29⋮29\)
=> Điều phải chứng minh
a.
\(9^7+81^4-27^5\)
\(=\left(3^2\right)^7+\left(3^4\right)^4-\left(3^3\right)^5\)
\(=3^{14}+3^{16}-3^{15}\)
\(=3^{14}\left(1+3^2-3\right)\)
\(=3^{14}\left(1+9-3\right)\)
\(=3^{14}\cdot7⋮7\left(đpcm\right)\)
b.
\(25^{25}+5^{49}-125^{16}\)
\(=\left(5^2\right)^{25}+5^{49}-\left(5^3\right)^{16}\)
\(=5^{50}+5^{49}-5^{48}\)
\(=5^{48}\left(5^2+5-1\right)\)
\(=5^{48}\left(25+5-1\right)\)
\(=5^{48}\cdot29⋮29\left(đpcm\right)\)