1. Cho A = \(\left(\frac{x^2-25}{x^3-10x^2+25}\right):\left(\frac{y-2}{y^2-y-2}\right)\)
Tính giá trị M biết: x2 + 9y2 - 4xy = 2xy - \(\left|x-3\right|\)
1. tính nhanh giá trị biểu thức:
a) \(x^2+4y^2-4xy\) tại x = 18; y = 4
b) \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\) tại x = 100
2. tìm điều kiện của biến dể giá trị của biểu thức sau xác định?
a) \(\frac{x^2-10x+25}{x^2-5x}\)
b) \(\frac{x^2-10x}{x^2-4}\)
Cho \(A=\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a) CM giá trị của A ko phụ thuộc x
b) Tìm minA
Rút gọn các biểu thức rồi tính giá trị:
a) \(\frac{x^2y\left(y-x\right)-xy^2\left(x-y\right)}{3y^2-2x^2}\), với x = -3; y = \(\frac{1}{2}\)
b) \(\frac{\left(8x^3-y^3\right)\left(4x^2-y^2\right)}{\left(2x+y\right)\left(4x^2-4xy+y^2\right)}\), với x = 2; y = -\(\frac{1}{2}\)
Cho\(A=\frac{\left(x^2+y\right)\left(\frac{1}{4}+y\right)+x^2y^2+\frac{3}{4}\left(\frac{1}{3}+y\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a, Tìm tập xác định của A
b, Cmr giá trị của A không phụ thuộc vào x
c, Tìm Min A và giá trị tương ứng của y
chứng minh rằng giá trị biểu thức sau ko hụ thuộc vào biến
a.\(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
b.\(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)
c.\(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
1) Cho a^3+b^3+c^3=3abc và abc khác 0. Tính giá trị của P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) Tính giá trị biểu thức A= \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
với a khác b, hoặc b khác c, hoặc c khác a
3) Tính giá trị biểu thức B= \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
với x khác y, hoặc y khác z, hoặc z khác x
4) Tính giá trị biểu thức C= \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
với x khác y; y khác z; z khác x
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)
Bài 1: Tính giá trị biểu thức:
\(A=5x\left(x-4y\right)-4y\left(y-5x\right)\) với \(x=-\frac{1}{5};y=-\frac{1}{2}\)
\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)
Với x = \(\frac{1}{2}\); y = 2
Bài 2: Chứng minh rằng:
a) \(\left(4x^2-2xy+y^2\right)\left(2x+y\right)=8x^3+y^3\)
b) \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)=x^7+x^5+1\)