\(=2\sqrt{x}-\sqrt{\dfrac{4x}{2}}+\sqrt{\dfrac{x^2}{x}}-2\sqrt{2x}\\ =2\sqrt{x}-\sqrt{2x}+\sqrt{x}-2\sqrt{2x}=3\sqrt{x}-3\sqrt{2x}\)
\(=2\sqrt{x}-\sqrt{\dfrac{4x}{2}}+\sqrt{\dfrac{x^2}{x}}-2\sqrt{2x}\\ =2\sqrt{x}-\sqrt{2x}+\sqrt{x}-2\sqrt{2x}=3\sqrt{x}-3\sqrt{2x}\)
rút gọn biểu thức \(P=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\) với x>0; x≠4; x≠9
P=\(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
a) rút gọn R
b) tìm giá trị của x để P=-1
cho biểu thức p=\(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\)với x>0;x khác 4,x khác 9 .rút gọn p
b) \(x^2+8x-3\) = \(2\sqrt{x\left(8+x\right)}\)
c)\(\sqrt{\dfrac{x^2+x+1}{x}}+\sqrt{\dfrac{x}{x^2+x+1}}=\dfrac{7}{4}\)
Cho B=\(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}-\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
a)Rút gọn B
b)Tìm m để với mọi giá trị x>9 ta có \(m\left(\sqrt{x}-3\right)B>x+1\)
Bài 3.Tìm x để \(\sqrt{ }\) có nghĩa
a)\(\sqrt{\dfrac{3}{x+7}}\)
b)\(\sqrt{\dfrac{-2}{5-x}}\)
c)\(\sqrt{x^2-7x+10}\)
d)\(\sqrt{x^2-8x+10}\)
e)\(\sqrt{9x^2+1}\)
Bài 1: Tìm x để biểu thức có nghĩa
a)\(\sqrt{\dfrac{2x-8}{x^2+1}}\) b) \(\sqrt{\dfrac{-x^2-3}{8x+10}}\)
c)\(\dfrac{1}{\sqrt{x^2-2x+1}}\)
Phương pháp 3. Sử dụng phép đặt ẩn phụ
a \(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
b \(x^2-6x+9=4\sqrt{6-6x+x^2}\)
c \(\sqrt{\dfrac{x^2+x+1}{x}}+\sqrt{\dfrac{x}{x^2+x+1}}=\dfrac{7}{4}\)
d \(x^2+8x-3=2\sqrt{x\left(8+x\right)}\)
Cho biểu thức A = \(\left(\dfrac{8x\sqrt{x}-1}{2x-\sqrt{x}}-\dfrac{8x\sqrt{x}+1}{2x+\sqrt{x}}\right):\dfrac{2x+1}{2x-1}\left(x>0;x\ne\dfrac{1}{2};x\ne\dfrac{1}{4}\right)\)
a) Rút gọn A
b) Tìm tất cả các giá trị của x để A là số chính phương