\(\left[\left(-2003\right)+\left(-250\right)\right]+275+2003=-2253+2278=25\)
\(\left(125.2^2-123.4\right):4=\left(125.4-123.4\right):4=4\left(125-123\right):4=2\)
\(\left[\left(-2003\right)+\left(-250\right)\right]+275+2003=-2253+2278=25\)
\(\left(125.2^2-123.4\right):4=\left(125.4-123.4\right):4=4\left(125-123\right):4=2\)
2003/1*2+2003/2*3+2003/3*4+...+2003/2002*2003
Cho S =(2003+2003^2+2003^3+2003^4+....+2003^100)
Chứng minh S chia hết cho 2004
Cho các số nguyên a^1;a^2;..;a^2003 thỏa mãn a^1+a^2+...+a^2003=0; a^1+a^2=a^3+a^4=...=a^2001+a^2002=a^2003+a^1=1.Tính a^1, a^2003
Tìm x biết Ax + B = C
A = 158 x 12 - 12/7 - 12/289 -12/85 // 4 - 4/7 - 4/289 - 4/85 : 1/6 x 505505505 / 711711711 - 2005
B = 2003 x [2004 ^2003 + 2004^2002 + ..... + 2004 + 1] - 2004^2004 - 5
C= 2003 x 1986 + 2002 x 17 + 2020 / 2003 x 2004 - 2003 ^2
jup mik nhe
2002+2002*2+2002*3+2002*4+2003*5+2003*6
So sánh A=2004-2003/2004+2003 và B=2004^2-2003^2/2004^2+2003^2
1-2+3-4+...-98+99
(-2003)+(-21+75+2003)
So sánh 2 phân số sau: A = 20032003 + 1 / 20032004 + 1 và B = 20032002 + 1 / 20032003 + 1
Chứng minh 1-1/2+1/3-1/4+...+1/2002-1/2003 = 1/1002+1/1003+...+1/2003