Ta có: 1 + 2+ 3 + ...+ 30 = [30 * ( 30 + 1)] / 2 = 465
==> 31 + 32 + 33 + 34 + ...+ (n-1) + n = [1+ 2+ 3 + ...+ (n-1) + n ] - [1+ 2 + 3 + ...+ 30]
Khi đó ta co: [n* (n+1) ] / 2 - (465) = 4585 ==> [n*(n+1)] / 2 = 5050 ==> n * (n+ 1) = 10100 ==> n^2 + n - 10100 = 0 ==> n^2 + 101n - 100n - 10100 = 0 => n(n+101) - 100( n + 101) = 0 ==> (n-100) * (n+ 101) = 0 ==> n = 100 hoặc n = -101 ( loại)
Vậy n = 100
Câu 2: 6+24+60+96+...+1716
Ta co: 24 + 60 + 96 + ..+ 1716 = 24 + (24 + 1 * 36) + (24 + 2 * 36) + .....+ (24 + 47*36)
Chúng ta thấy số 24 xuất hiện 48 lần
= 24 * 48 + 36 * (1 + 2 + 3 + ...+ 47) = 24 * 48 + 36 * [47*(47+1)/2] = 1152 + 40608 = 41760
vậy kq = 6 + 41760 = 41766