Cho \(sin\alpha=\frac{-2}{3}\); \(\alpha\in\) góc phần tư thứ (III).
a) Tính \(cos\alpha\), \(tan\left(\alpha+\pi\right)\)
b) Tính \(sin\left(\alpha+\frac{3\pi}{2}\right)\)
Biết tan α=3. Tính giá trị các biểu thức sau:
a)\(\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
b)\(\frac{2\sin\alpha+3\cos\alpha}{3\sin\alpha-5\cos\alpha}\)
c)\(\frac{1+2\cos^2\alpha}{\sin^2\alpha-\cos^2\alpha}\)
d)\(\frac{\sin^4\alpha+\cos^4\alpha}{1+\sin^2\alpha}\)
cm các đẳng thức:
a) \(\frac{1+\sin^2\alpha}{1-\sin^2\alpha}=1+2\tan^2\alpha\)
b) \(\frac{\cos\alpha}{1+\sin\alpha}+\tan\alpha=\frac{1}{\cos\alpha}\)
c) \(\frac{\sin\alpha}{1+\cos\alpha}+\frac{1+\cos\alpha}{\sin\alpha}=\frac{2}{\sin\alpha}\)
cho α , β thỏa mãn sin α + sin β =\(\frac{\sqrt{2}}{2}\) và cos α + cos β =\(\frac{\sqrt{6}}{2}\).Tính sin( α + β )
a) Tính cho sin α=\(\frac{2}{3}\) và 0∠α∠\(\frac{\pi}{2}\). Tính giá trị của biểu thức A=\(\frac{3\sin\alpha-\sqrt{5}.\cos\alpha}{2.\tan\alpha}\)
Rút gọn biểu thức
P = tan α ( 1 + cos2α / sin α - sin α )
Chứng minh đẳng thức:
2\(\left(\sin^6\alpha+\cos^6\alpha\right)+1=3\left(\sin^4\alpha+\cos^4\alpha\right)\)
Cho tan α=2. Tính giá trị của biểu thức C=\(\frac{\sin\alpha}{\sin^3\alpha+2\cos^3\alpha}\)
Chứng minh đẳng thức: \(\dfrac{tan\left(\alpha-\dfrac{\pi}{2}\right).cos\left(\dfrac{3\pi}{2}+\alpha\right)-sin^3\left(\dfrac{7\pi}{2}-\alpha\right)}{cos\left(\alpha-\dfrac{\pi}{2}\right).tan\left(\dfrac{3\pi}{2}+\alpha\right)}=sin^2\alpha\)