\(A=\left\{0,1,2,3,4,5\right\}\)
Gọi số cần lập có 4 chữ số là \(\overline{a_1a_2a_3a_4}=m\) , \(a_i\ne a_j\); \(a_4⋮2\)
+Với \(a_4=0\)\(\Rightarrow a_4\) có 1 cách chọn.
Chọn a1 có 5 cách chọn, \(a_1\in A\backslash\left\{a_4\right\}\).
Chọn a2 có 4 cách chọn,\(a_2\in A\backslash\left\{a_1;a_4\right\}\).
Chọn a3 có 3 cách chọn,\(a_3\in A\backslash\left\{a_1;a_2;a_4\right\}\).
\(\Rightarrow\)Số các số cần lập: \(1\cdot5\cdot4\cdot3=60\left(số\right)\)
+Với \(a_4\ne0\Rightarrow\) \(a_4\) có 3 cách chọn.
Chọn \(a_1\) có 4 cách chọn, \(a_1\in A\backslash\left\{0;a_4\right\}\)
Chọn a2 có 4 cách chọn, a2∈A\\(\left\{a_1;a_4\right\}\)
Chọn a3 có 3 cách chọn, a3∈A\\(\left\{a_1;a_2;a_4\right\}\)
\(\Rightarrow\)Số các số cần lập là: \(3\cdot4\cdot4\cdot3=144\left(số\right)\)
Vậy qua hai trường hợp có tát cả 60+144=204 số cần lập.
\(\)