1. a/ ĐKXD: \(x\ne0\) và \(x\ne\pm3\)
Rút gọn:
\(A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(\Rightarrow\left(\frac{-\left(x-3\right)}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{\left(x+3\right)}\right).\frac{x+3}{3x^2}\)
\(\Rightarrow\left(-1+\frac{x}{x+3}\right).\frac{x+3}{3x^2}\)
\(\Rightarrow\left(\frac{-\left(x+3\right)+x}{x+3}\right).\frac{x+3}{3x^2}\)
\(\Rightarrow\frac{-x-3+x}{3x^2}=-\frac{3}{3x^2}=\frac{-1}{x^2}\)
b/ Thay \(x=\frac{-1}{2}\) ( phù hợp điều kiện )
\(A=\frac{-1}{x^2}=\frac{-1}{\left(-\frac{1}{2}\right)^2}\)
\(\Rightarrow-1:\frac{1}{4}=-4\)