1. \(a< b\Leftrightarrow2a< 2b\Leftrightarrow2a+1< 2b+1\)
\(a< b\Leftrightarrow-3a>-3b\Leftrightarrow-3a>-3b-1\)
2.\(a>b>0\Leftrightarrow a.\frac{1}{ab}>b.\frac{1}{ab}\Leftrightarrow\frac{1}{b}>\frac{1}{a}\Leftrightarrow\frac{1}{a}< \frac{1}{b}\)
1. \(a< b\Leftrightarrow2a< 2b\Leftrightarrow2a+1< 2b+1\)
\(a< b\Leftrightarrow-3a>-3b\Leftrightarrow-3a>-3b-1\)
2.\(a>b>0\Leftrightarrow a.\frac{1}{ab}>b.\frac{1}{ab}\Leftrightarrow\frac{1}{b}>\frac{1}{a}\Leftrightarrow\frac{1}{a}< \frac{1}{b}\)
Giải giúp mình với
CMR \(\frac{y-z}{\left(x-y\right).\left(x-z\right)}+\frac{z-x}{\left(y-z\right).\left(y-x\right)}+\frac{x-y}{\left(z-x\right).\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)Cho a,b,c,x,y,z \(\ne\)0 và \(a+b+c=x+y+z=\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\)CMR \(a^2x+b^2y+c^2z=0\)Thanks nhiều ạ
Bài 1.Cho \(x+y+z=0\)
Tính \(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
Bài 2. Cho \(a+b+c=1;a^2+b^2+c^2=1;\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
CMR: \(xy+yz+zx=0\)
Bài 3. Cho \(3x-y=2z\)
\(2x+y=7z\)
Tính \(S=\frac{x^2-2xy}{x^2+y^2}\)với \(x,y\ne0\)
Bài 4. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính \(E=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 5. Cho \(abc\ne0\)thỏa mãn: \(2ab+6bc+2ac=0\)
Tính \(A=\frac{\left(a+2b\right)\left(2b+3c\right)\left(3c+a\right)}{6abc}\)
Bài 6. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính \(Y=\frac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\frac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\frac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)
Bài 7. Cho \(\hept{\begin{cases}10a^2-3b^2+5ab=0\\9a^2-b^2\ne0\end{cases}}\)
Tính \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)
1. Cho \(a,b\in Z;a,b\ne0;a\ne3b;a\ne-5b\). C/m giá trị A là 1 số nguyên lẻ \(A=\frac{b\left(2a^2+10ab+a+5b\right)}{a-3b}:\frac{a^2b+5ab^2}{a^2-3ab}\)
2. Cho \(x+y+z=1\)và \(x\ne-y;y\ne-z;z\ne-x\)
Tính giá trị biểu thức \(Q=\frac{xy+z}{\left(x+y\right)^2}.\frac{yz+x}{\left(y+z\right)^2}.\frac{zx+y}{\left(z+x\right)^2}\)
3. Cho \(xyz=1\).Tính \(P=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2-\left(x+\frac{1}{x}\right)\left(y-\frac{1}{y}\right)\left(z-\frac{1}{z}\right)\)
Bài 1: Cho a,b,c đôi một khác nhau. CMR:
\(\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}=1\)=1
Bài 2: CMR: nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)và x=y+z thì:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Cho a,b,c >0 và a+b+c=1
CMR \(\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\ge\frac{1}{9}\)
=))) Giúp tớ với các bạn nhỏ ơiii
1) Cho \(n\ge2\)là số nguyên . CMR \(2^{2^{n+1}}+2^{2^n}+1\)có ít nhất 3 ước nguyên dương lớn hơn 1
2) Cho a,b,c thỏa a + b + c = 0 . CMR \(\left(a^2+b^2+c^2\right)^2=2\left(a^4+b^4+c^4\right)\)
3) Cho x , y , z thỏa xy + yz + zx = 0 và x + y + z = -1 . Tính \(A=\frac{xy}{z}+\frac{zx}{y}+\frac{yz}{x}\)
- FanMixigaming -
Bài 1: a;b;c > 0
Chứng minh : \(\dfrac{a}{3a+b+c}+\dfrac{b}{3b+a+c}+\dfrac{c}{3c+a+b}\le\dfrac{3}{5}\)
Bài 2: x;y;z \(\ne\) 1 và xyz = 1
Chứng minh : \(\dfrac{x^2}{\left(x-1\right)^2}+\dfrac{y^2}{\left(y-1\right)^2}+\dfrac{z^2}{\left(z-1\right)^2}\ge1\)
Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0.\)CMR biểu thức sau luôn âm với mọi x với x,y,z khác 0
\(A=\left(\frac{x^2+y^2}{x^2y^2}-\frac{1}{z^2}\right)\left(\frac{x^2+z^2}{x^2z^2}-\frac{1}{y^2}\right)\left(\frac{y^2+z^2}{y^2z^2}-\frac{1}{x^2}\right)\)
Bài 1:Cho a,b,c là các số nguyên đôi 1 khác nhau thỏa mãn a+b+c=2019.tính giá trị biểu thức
\(M=\frac{a^3}{\left(a+b\right)\left(a-c\right)}+\frac{b^3}{\left(b-a\right)\left(b-c\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
Bài 2:Cho \(a+b+c=0;P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b};Q=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)
\(CMR\) \(P\cdot Q=9\)
Bài 3:Cho 3 số x;y;z đôi 1 khác nhau thỏa mãn x+y+z=0 và \(A=\frac{4xy-z^2}{xy+2z^2};B=\frac{4yz-x^2}{yz+2x^2};C=\frac{4xz-y^2}{xz+2y^2}\)
CMR A.B.C=1