§1. Bất đẳng thức

trầntrongphu
Xem chi tiết
Akai Haruma
22 tháng 7 2020 lúc 12:56

Lời giải:

Áp dụng BĐT AM-GM với các số dương $x,y,z$ ta có:

$(\sqrt{3}-1)^2x^2+y^2\geq 2(\sqrt{3}-1)xy$

$(\sqrt{3}-1)^2z^2+y^2\geq 2(\sqrt{3}-1)yz$

$2(\sqrt{3}-1)x^2+2(\sqrt{3}-1)z^2\geq 4(\sqrt{3}-1)xz$

Cộng theo vế và thu gọn:

2(x^2+y^2+z^2)\geq 2(\sqrt{3}-1)(xy+yz+2xz)$

$\Rightarrow P=\frac{x^2+y^2+z^2}{xy+yz+2xz}\geq \sqrt{3}-1$

Vậy $P_{\min}=\sqrt{3}-1$ khi $(\sqrt{3}-1)x=(\sqrt{3}-1)z=y$

Bình luận (0)
Trầnnhy
Xem chi tiết
Đinh Tuấn Việt
6 tháng 6 2016 lúc 20:13

undefined

Bình luận (0)
Mai Mai
Xem chi tiết
Son Goku
8 tháng 6 2018 lúc 20:35

\(\dfrac{x+2y+1}{x^2+y^2+7}=\dfrac{x+2y+1}{\left(x^2+1\right)+\left(y^2+4\right)+2}\le\dfrac{x+2y+1}{2x+4y+2}=\dfrac{1}{2}\)(BĐT Cô-si)

Bình luận (0)
Mai Mai
Xem chi tiết
Akai Haruma
23 tháng 4 2018 lúc 23:55

Lời giải:

Với điều kiện đã cho thì hiển nhiên mẫu dương.

Áp dụng BĐT Cauchy-Schwarz ta có:

\(M=\frac{a^2}{2a\sqrt{b}-3a}+\frac{b^2}{2b\sqrt{c}-3b}+\frac{c^2}{2c\sqrt{a}-3c}\)\(\geq \frac{(a+b+c)^2}{2(a\sqrt{b}+b\sqrt{c}+c\sqrt{a})-3(a+b+c)}\)

Áp dụng BĐT Bunhiacopxky kết hợp BĐT AM-GM:

\((a\sqrt{b}+b\sqrt{c}+c\sqrt{a})^2\leq (a+b+c)(ab+bc+ac)\)

\(\leq (a+b+c).\frac{(a+b+c)^2}{3}=\frac{(a+b+c)^3}{3}\)

\(\Rightarrow a\sqrt{b}+b\sqrt{c}+c\sqrt{a}\leq \sqrt{\frac{(a+b+c)^3}{3}}\)

\(\Rightarrow M\geq \frac{(a+b+c)^2}{2\sqrt{\frac{(a+b+c)^3}{3}}-3(a+b+c)}\)

Đặt \(\sqrt{\frac{a+b+c}{3}}=t(t>\frac{3}{2})\)\(\Rightarrow a+b+c=3t^2\)

Ta có:

\(P\geq\frac{9t^4}{6t^3-9t^2}=\frac{3t^2}{2t-3}\)

\(\Leftrightarrow P\geq \frac{\frac{3}{4}(2t-3)(2t+3)}{2t-3}+\frac{27}{4(2t-3)}\)

\(\Leftrightarrow P\geq \frac{3}{4}(2t+3)+\frac{27}{4(2t-3)}=\frac{3}{4}(2t-3)+\frac{27}{4(2t-3)}+\frac{9}{2}\)

Áp dụng BĐT AM-GM:

\(\frac{3}{4}(2t-3)+\frac{27}{4(2t-3)}\geq 2\sqrt{\frac{3}{4}.\frac{27}{4}}=\frac{9}{2}\)

\(\Rightarrow P\geq \frac{9}{2}+\frac{9}{2}=9\)

Vậy \(P_{\min}=9\)

Bình luận (0)
Hung nguyen
24 tháng 4 2018 lúc 8:57

Đặt \(\left\{{}\begin{matrix}\sqrt{a}=x\\\sqrt{b}=y\\\sqrt{c}=z\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{x^2}{2y-3}+\dfrac{y^2}{2z-3}+\dfrac{z^2}{2x-3}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)-9}\ge9\)

\(\dfrac{t^2}{2t-9}-9=\dfrac{\left(t-9\right)^2}{2t-9}\ge0\) (với \(t=x+y+z\))

Bình luận (0)
Neet
24 tháng 4 2018 lúc 11:55

# cách khác:

Áp dụng AM-GM: \(\dfrac{a}{2\sqrt{b}-3}+\left(2\sqrt{b}-3\right)\ge2\sqrt{a}\)

Thiết lập tương tự rồi cộng lại ta được

\(VT+2\sqrt{a}+2\sqrt{b}+2\sqrt{c}-9\ge2\sqrt{a}+2\sqrt{b}+2\sqrt{c}\)

\(\Rightarrow VT\ge9\)

Dấu = xảy ra tại a=b=c=9

Bình luận (0)
thùy dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2022 lúc 20:41

a: Khi m=0 thì f(x)=-x2-x+1

f(x)<0

\(\Leftrightarrow-x^2-x+1< 0\)

\(\Leftrightarrow x^2+x-1>0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{5}{4}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}>\dfrac{\sqrt{5}}{2}\\x+1< -\dfrac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{\sqrt{5}-1}{2}\\x< \dfrac{-\sqrt{5}-1}{2}\end{matrix}\right.\)

b: TH1: m=1

Pt sẽ là -2x+2=0

=>-2x=-2

hay x=1(loại)
TH2: m<>1

\(\text{Δ}=\left(m+1\right)^2-4\left(m-1\right)\left(m+1\right)\)

\(=m^2+2m+1-4m^2+4=-3m^2+2m+5\)

Để f(x) vô nghiệm thì \(3m^2-2m-5>0\)

\(\Leftrightarrow\left(3m-5\right)\left(m+1\right)>0\)

=>m>5/3 hoặc m<-1

Bình luận (0)
Linh Thuy
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2022 lúc 11:07

Câu 1: D

A sai vì BPT <=> 8x-4x>0

=>x>0

B sai vì BPT tương đương với 4x-8x>0

=>x<0

C sai vì nếu x=0 thì BPT này sai

Bình luận (0)
phạm thảo
Xem chi tiết
Akai Haruma
21 tháng 4 2018 lúc 23:14

Lời giải:
Ta có:

\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)

\(=27-3(3-a)(3-b)(3-c)\)

\(=27-3[27-9(a+b+c)+3(ab+bc+ac)-abc]\)

\(=27-3[3(ab+bc+ac)-abc]=27-9(ab+bc+ac)+3abc\)

Do đó:

\(A=a^3+b^3+c^3+\frac{15}{4}abc=27-9(ab+bc+ac)+\frac{27}{4}abc(*)\)

Áp dụng BĐT Schur :

\(abc\geq (a+b-c)(b+c-a)(c+a-b)\)

\(\Leftrightarrow abc\geq (3-2a)(3-2b)(3-2c)\)

\(\Leftrightarrow abc\geq 27-18(a+b+c)+12(ab+bc+ac)-8abc\)

\(\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27\)

\(\Leftrightarrow 3abc\geq 4(ab+bc+ac)-9\)

\(\Rightarrow \frac{27}{4}abc\geq 9(ab+bc+ac)-\frac{81}{4}(**)\)

Từ \((*); (**)\Rightarrow A\geq 27-\frac{81}{4}=\frac{27}{4}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

Bình luận (0)
Đinh Bảo Như
23 tháng 4 2018 lúc 19:18

Ta có:

a3+b3+

Bình luận (0)
phạm thảo
Xem chi tiết
Neet
23 tháng 4 2018 lúc 22:36

Đồng bậc :\(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge\dfrac{6}{9}\left(a^2+b^2+c^2\right)^2\)

\(\Leftrightarrow3ab\left(a^2+b^2\right)+3bc\left(b^2+c^2\right)+3ac\left(a^2+c^2\right)\ge2\left(a^4+b^4+c^4\right)+4\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow\sum\left[3ab\left(a^2+b^2\right)-6a^2b^2\right]\ge2\left(a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\right)\)

\(\Leftrightarrow\sum3ab\left(a-b\right)^2\ge\sum\left(a^2-b^2\right)^2\)

\(\Leftrightarrow\sum\left(a-b\right)^2\left(ab-a^2-b^2\right)\ge0\)

Suy ra đề sai

Bình luận (1)
phạm thảo
Xem chi tiết
Hà Rím Oppa
Xem chi tiết