§1. Bất đẳng thức

phạm thảo
Xem chi tiết
Kuro Kazuya
17 tháng 5 2018 lúc 18:23

Bài 1

\(VT=\dfrac{a^2}{ab^2+abc+ac^2}+\dfrac{b^2}{c^2b+abc+a^2b}+\dfrac{c^2}{a^2c+abc+b^2c}\)

Áp dụng bđt Cauchy dạng phân thức

\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)

\(\Leftrightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)

\(\Leftrightarrow VT\ge\dfrac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)

Dấu ''='' xảy ra khi \(a=b=c\)

Bình luận (0)
Kuro Kazuya
17 tháng 5 2018 lúc 18:48

Bài 2

\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\dfrac{\sqrt{a}}{b+c}\right)^2+\left(\dfrac{\sqrt{b}}{c+a}\right)^2+\left(\dfrac{\sqrt{c}}{a+b}\right)^2\right]\)

Áp dụng bđt Bunhiacopxki ta có

\(VT\ge\left(\sqrt{a}.\dfrac{\sqrt{a}}{b+c}+\sqrt{b}.\dfrac{\sqrt{b}}{c+a}+\sqrt{c}.\dfrac{\sqrt{c}}{a+b}\right)^2\)

\(\Leftrightarrow VT\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\)

Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

Áp dụng bđt Cauchy dạng phân thức ta có

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\dfrac{3}{2}\)

\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)

\(\Rightarrow VT\ge\dfrac{9}{4}\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c\)

Bình luận (1)
Lông_Xg
Xem chi tiết
Akai Haruma
17 tháng 5 2018 lúc 0:04

Câu 1:

Áp dụng BĐT Cauchy:

\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)

\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)

Cộng theo vế các BĐT thu được:

\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

Bình luận (0)
Akai Haruma
17 tháng 5 2018 lúc 0:11

Câu 4:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)

\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)

Vậy \(A_{\min}=5+2\sqrt{6}\)

Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)

------------------------------

Áp dụng BĐT Cauchy:

\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)

\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)

Cộng theo vế hai BĐT trên:

\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$

Bình luận (0)
Kuro Kazuya
17 tháng 5 2018 lúc 0:41

Bài 1 : Áp dụng bđt Cauchy ta có : \(\sqrt{1+x^3+y^3}\ge\sqrt{3\sqrt[3]{x^3y^3}}=\sqrt{3xy}\)

\(\Rightarrow\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\dfrac{\sqrt{3xy}}{xy}\)

Biến đổi tương tự cho 2 vế còn lại ta có \(VT\ge\dfrac{\sqrt{3xy}}{xy}+\dfrac{\sqrt{3xz}}{xz}+\dfrac{\sqrt{3yz}}{yz}=a\)

Áp dụng bđt Cauchy cho 3 số thực dương ta có : \(a\ge3\sqrt[3]{\dfrac{\sqrt{27x^2y^2z^2}}{x^2y^2z^2}}=3\sqrt[3]{\sqrt{27}}=3\sqrt{3}\)

\(\Rightarrow VT\ge3\sqrt{3}\left(đpcm\right)\)

Bình luận (1)
bùi xuân mai
Xem chi tiết
Kuro Kazuya
17 tháng 5 2018 lúc 0:43

Áp dụng bđt Cauchy cho 3 số thực dương ta có

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{1}=9\left(đpcm\right)\)

Dấu ''='' xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Bình luận (0)
bùi xuân mai
16 tháng 5 2018 lúc 19:47

với a,b,c dương và có tổng =1

Bình luận (0)
Nguyễn Thanh Thủy
Xem chi tiết
Akai Haruma
16 tháng 5 2018 lúc 19:03

Lời giải:

Đặt \(\left\{\begin{matrix} a+b-c=x\\ b+c-a=y\\ c+a-b=z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} b=\frac{x+y}{2}\\ c=\frac{y+z}{2}\\ a=\frac{x+z}{2}\end{matrix}\right.\) \((x,y,z>0\) do $a,b,c$ là ba cạnh tam giác ).

BĐT cần chứng minh tương đương với :

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\geq \frac{4}{(x+y)^2}+\frac{4}{(y+z)^2}+\frac{4}{(z+x)^2}\)

Áp dụng BĐT Cauchy:

\(\frac{1}{x^2}+\frac{1}{y^2}\geq \frac{2}{xy}\)

\(\Rightarrow 2\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\geq \left(\frac{1}{x}+\frac{1}{y}\right)^2\)

Theo BĐT S.Vacso: \(\frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\Rightarrow 2\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\geq \frac{16}{(x+y)^2}(*)\)

Hoàn toàn tương tự:

\(2\left(\frac{1}{y^2}+\frac{1}{z^2}\right)\geq \frac{16}{(y+z)^2}; 2\left(\frac{1}{z^2}+\frac{1}{x^2}\right)\geq \frac{16}{(z+x)^2}(**)\)

Cộng theo vế \((*); (**)\) và rút gọn suy ra:

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\geq \frac{4}{(x+y)^2}+\frac{4}{(y+z)^2}+\frac{4}{(z+x)^2}\)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z$ hay $a=b=c$

Bình luận (0)
Nguyễn Thanh Thủy
Xem chi tiết
゚°☆Ʀїbї Ňƙσƙ Ňɠσƙ☆° ゚
16 tháng 5 2018 lúc 22:44

Áp dụng bđt tam giác: \(\left\{{}\begin{matrix}a+b>c\Leftrightarrow a+b+c>2c\\b+c>a\Leftrightarrow a+b+c>2a\\a+c>b\Leftrightarrow a+b+c>2b\end{matrix}\right.\)

Nhân theo vế: \(\left(a+b+c\right)^3>8abc\)

Bình luận (0)
Nguyễn Văn Phong
Xem chi tiết
Phan Cả Phát
Xem chi tiết
Son Goku
11 tháng 6 2018 lúc 17:51

\(2a^2+2b^2\le5ab\\ \Leftrightarrow\dfrac{a^2+b^2}{ab}\le\dfrac{5}{2}\\ \Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\le\dfrac{5}{2}\)

\(\dfrac{ab}{a^2+b^2-ab}\le\dfrac{ab}{2ab-ab}=1\)

Bình luận (0)
Almira
Xem chi tiết
Lightning Farron
9 tháng 9 2017 lúc 22:37

Đặt \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\)\(\left(x,y,z>0\right)\)\(\Rightarrow\left\{{}\begin{matrix}x+y=2c\\y+z=2a\\x+z=2b\end{matrix}\right.\)

Thì ta có: \(\dfrac{2\left(y+z\right)}{x}+\dfrac{9\left(x+z\right)}{2y}+\dfrac{8\left(x+y\right)}{z}\ge26\)

Áp dụng BĐT AM-GM ta có:

\(VT=\dfrac{2\left(y+z\right)}{x}+\dfrac{9\left(x+z\right)}{2y}+\dfrac{8\left(x+y\right)}{z}\)

\(=\dfrac{2y}{x}+\dfrac{2z}{x}+\dfrac{9x}{2y}+\dfrac{9z}{2y}+\dfrac{8x}{z}+\dfrac{8y}{z}\)

\(=\left(\dfrac{2y}{x}+\dfrac{9x}{2y}\right)+\left(\dfrac{2z}{x}+\dfrac{8x}{z}\right)+\left(\dfrac{9z}{2y}+\dfrac{8y}{z}\right)\)

\(\ge2\sqrt{\dfrac{2y}{x}\cdot\dfrac{9x}{2y}}+2\sqrt{\dfrac{2z}{x}\cdot\dfrac{8x}{z}}+2\sqrt{\dfrac{9z}{2y}\cdot\dfrac{8y}{z}}\)

\(\ge6+8+12=26=VP\)

Bình luận (2)
Le Minh Hoang
Xem chi tiết
Akai Haruma
2 tháng 5 2018 lúc 22:19

Lời giải:

Ta có:

\(P=\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}=\frac{(ab)^2+(bc)^2+(ca)^2}{abc}\)

Xét tử số:

\(\text{TS}=(ab)^2+(bc)^2+(ca)^2\)

\(\Rightarrow \text{TS}^2=a^4b^4+b^4c^4+c^4a^4+2(a^2b^4c^2+a^2b^2c^4+a^4b^2c^2)\)

Áp dụng BĐT AM-GM ta có:

\(\left\{\begin{matrix} a^4b^4+b^4c^4\geq 2a^2b^4c^2\\ b^4c^4+c^4a^4\geq 2a^2b^2c^4\\ c^4a^4+a^4b^4\geq 2a^4b^2c^2\end{matrix}\right.\)

Cộng theo vế và rút gọn:

\(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)

Do đó:

\(\text{TS}^2\geq 3(a^2b^4c^2+a^2b^2c^4+a^4b^2c^2)=3a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2\)

\(\Rightarrow \text{TS}\geq \sqrt{3}abc\)

\(\Rightarrow P\geq \sqrt{3}\)

Vậy \(P_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

Bình luận (0)
Dong tran le
6 tháng 5 2018 lúc 9:58

Cách khác:

\(P^2=\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}+\dfrac{c^2a^2}{b^2}+2\left(a^2+b^2+c^2\right)\)

Áp dụng BĐT Cauchy:

\(\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}\ge2b^2\)

CMTT\(\Rightarrow\)\(\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}+\dfrac{a^2c^2}{b^2}\ge a^2+b^2+c^2\)

\(\Rightarrow P^2\ge3\Rightarrow P\ge\sqrt{3}\)

Dấu"=" xảy ra\(\Leftrightarrow\)a=b=c=\(\dfrac{1}{\sqrt{3}}\)

Bình luận (0)
michelle holder
Xem chi tiết
Neet
28 tháng 9 2017 lúc 21:05

Áp dụng cauchy-schwarz:

\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+e}+\dfrac{d}{e+a}+\dfrac{e}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+bd}+\dfrac{c^2}{cd+ce}+\dfrac{d^2}{ed+ad}+\dfrac{e^2}{ae+be}\ge\dfrac{\left(a+b+c+d\right)^2}{ab+ac+ad+ae+bc+bd+be+cd+ce+de}\)

Giờ chỉ cần chứng minh

\(ab+ac+ad+ae+bc+bd+be+cd+ce+de\le\dfrac{2}{5}\left(a+b+c+d+e\right)^2\)

\(\Leftrightarrow ab+ac+ad+ae+bc+bd+be+cd+ce+de\le2\left(a^2+b^2+c^2+d^2+e^2\right)\)

điều này hiển nhiên đúng theo AM-GM:

\(ab\le\dfrac{a^2+b^2}{2};ac\le\dfrac{a^2+c^2}{2};ad\le\dfrac{a^2+d^2}{2}...\)

Cứ vậy ta thu được đpcm .Dấu = xảy ra khi a=b=c=d=e

P/s: : ]

Bình luận (0)