Violympic toán 9

Quoc Tran Anh Le
Xem chi tiết
Chillwithme
11 tháng 3 2021 lúc 22:18

Chúc mn học tốt

Bình luận (0)
Trần Thanh Phương
12 tháng 3 2021 lúc 8:51

C402:

\(1+2^x=y^2\)

\(\Leftrightarrow2^x=\left(y-1\right)\left(y+1\right)\)

Từ đó ta suy ra \(\left\{{}\begin{matrix}y-1=2^a\\y+1=2^b\end{matrix}\right.\) với \(\left\{{}\begin{matrix}a+b=x\\b>a\ge1\end{matrix}\right.\)

\(\Rightarrow2^b-2^a=y+1-y+1=2\)

\(\Leftrightarrow2^a\left(2^{b-a}-1\right)=2\)

\(\Rightarrow\left\{{}\begin{matrix}2^a=2\\2^{b-a}-1=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b-a=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2^1+1=3\\x=1+2=3\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(3;3\right)\) là nghiệm nguyên duy nhất của phương trình.

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Trần Minh Hoàng
10 tháng 3 2021 lúc 22:35

\(x+\sqrt{4-x^2}=2+x\sqrt{4-x^2}\).

ĐKXĐ: \(-2\le x\le2\).

Đặt \(\sqrt{4-x^2}=y\ge0\). Ta có \(x^2+y^2=4\Leftrightarrow\left(x+y\right)^2-2xy=4\Leftrightarrow xy=\dfrac{\left(x+y\right)^2-4}{2}\).

\(PT\Leftrightarrow x+y=2+xy\Leftrightarrow x+y=2+\dfrac{\left(x+y\right)^2-4}{2}\Leftrightarrow x+y=\dfrac{\left(x+y\right)^2}{2}\Leftrightarrow\left[{}\begin{matrix}x+y=0\\x+y=2\end{matrix}\right.\).

Với x + y = 0 ta có xy = -2. Do \(y\ge0\Rightarrow x=-\sqrt{2}\left(TMĐK\right)\).

Với x + y = 2 ta có xy = 0. Do đó x = 2 (TMĐK) hoặc x = 0 (TMĐK).

Vậy,..

Bình luận (5)
Trần Thanh Phương
11 tháng 3 2021 lúc 8:53

Bài 16: 

1) \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)

ĐKXĐ: \(\left\{{}\begin{matrix}7-x\ge0\\x-1\ge0\end{matrix}\right.\Leftrightarrow1\le x\le7\)

\(pt\Leftrightarrow x-1+2\sqrt{7-x}-2\sqrt{x-1}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=2\\\sqrt{x-1}=\sqrt{7-x}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\) ( thỏa )

Vậy tập nghiệm của pt là \(x=\left\{4;5\right\}\)

2) Phương trình 2 mình ko rõ đề, nhưng hướng làm như sau:

ĐKXĐ: \(2x+y\ge0\)

\(\left(1\right)\Leftrightarrow2x+y+2\sqrt{2x+y}-3=0\)

\(\Leftrightarrow\left(\sqrt{2x+y}-1\right)\left(\sqrt{2x+y}+3\right)=0\)

\(\Leftrightarrow\sqrt{2x+y}=1\)

\(\Leftrightarrow2x+y=1\)

\(\Leftrightarrow y=1-2x\)

Thay vào pt 2 rồi tìm nghiệm.

Bình luận (0)
Trần Thanh Phương
11 tháng 3 2021 lúc 19:00

Bài 22:

1) \(\sqrt{x}+2\sqrt{y-1}+3\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z+11\right)\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y-1}=b\\\sqrt{z-2}=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=a^2\\y=b^2+1\\z=c^2+2\end{matrix}\right.\) \(\left(a;b;c\ge0\right)\)

\(pt\Leftrightarrow a+2b+3c=\dfrac{1}{2}\left(a^2+b^2+c^2+14\right)\)

\(\Leftrightarrow a^2+b^2+c^2-2a-4b-6z+14=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\\z=11\end{matrix}\right.\)

Vậy...

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Nguyễn Thành Trương
8 tháng 3 2021 lúc 14:42

b)Hệ phương trình tương đương:

 \(\begin{array}{l} \left\{ \begin{array}{l} {\left( {xy + x} \right)^2} + 2\left( {xy + y} \right) = 3\\ xy\left( {x + 1} \right)\left( {y + 1} \right) = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {\left( {xy + x} \right)^2} + 2\left( {xy + y} \right) = 3\\ \left( {xy + y} \right)\left( {xy + x} \right) = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {a^2} + 2b = 3\\ ab = 1 \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} a = 1,b = 1\\ a = - 2,b = - \dfrac{1}{2} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} xy + x = 1\\ xy + y = 1 \end{array} \right.\\ \left\{ \begin{array}{l} xy + x = - 2\\ xy + y = - \dfrac{1}{2} \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = y = \dfrac{{ - 1 - \sqrt 5 }}{2}\\ x = y = \dfrac{{\sqrt 5 - 1}}{2} \end{array} \right. \end{array}\)

KL:

Bình luận (0)
Cherry
8 tháng 3 2021 lúc 17:42

b)Hệ phương trình tương đương:

 

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
tthnew
6 tháng 3 2021 lúc 12:17

Câu 285

a) ĐKXĐ: $x\le 10.$

 \(PT\Leftrightarrow\left(\dfrac{x^3+7x^2+18x+4}{\sqrt{10-x}}-10\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\dfrac{\left(x^5+15x^4+100x^3+360x^2+740x+984\right)}{\sqrt{10-x}\left(x^3+7x^2+8x+4+10\sqrt{10-x}\right)}+1\right]=0\)

Rõ ràng biểu thức trong ngoặc vuông vô nghiệm.

Vậy $x=1$ (TMĐKXĐ)

b) Đặt $t=ab+bc+ca.$

 \(a,b,c\in\left[0,1\right]\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1.\) (1)

Từ (1) suy ra \(3abc\ge\sum c\left(a+b-1\right)=2t-\left(a+b+c\right)\ge2t-3\)

Cũng do $a,b,c\in \left[0,1\right]$ suy ra \(\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\Rightarrow abc\le\sum\left(ab-a\right)+1\)

Do đó"\(VT\le\sum\dfrac{a}{1+bc}+\sum\left(ab-a\right)+1\)

\(=\sum\left(\dfrac{a}{1+bc}-a\right)+\sum ab+1\)

\(=-abc\sum\dfrac{1}{1+bc}+ab+bc+ca+1\)

\(\le t+1-\dfrac{9abc}{t+3}\le t+1-\dfrac{3\left(2t-3\right)}{t+3}\le\dfrac{5}{2}\) 

\(\Leftrightarrow\left(2t-3\right)\left(3-t\right)\ge0\)

Do \(t\le\dfrac{\left(a+b+c\right)^2}{3}=3\) nên nếu $ab+bc+ca\ge \dfrac{3}{2}$ thì bất đẳng thức đúng.

Trong trường hợp ngược lại ta có \(VT\le t+1-\dfrac{9abc}{t+3}\le t+1\le\dfrac{3}{2}+1=\dfrac{5}{2}\) (đpcm)

Hoàn tất chứng minh.

Đẳng thức xảy ra khi (bạn đọc tự xét)

Bình luận (2)
Nguyễn Trọng Chiến
6 tháng 3 2021 lúc 13:37

290

Ta có \(\dfrac{a^4b}{a^2+1}=a^2b-\dfrac{a^2b}{a^2+1}\ge a^2b-\dfrac{a^2b}{2a}=a^2b-\dfrac{ab}{2}\)

Chứng minh tương tự ta được:  

\(\dfrac{b^4c}{b^2+1}\ge b^2c-\dfrac{bc}{2};\dfrac{c^4a}{c^2+1}\ge c^2a-\dfrac{ca}{2}\)

\(\Rightarrow\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\dfrac{ab}{2}-\dfrac{bc}{2}-\dfrac{ca}{2}\)

Áp dụng bđt Cô-si:

\(a^2b+a^2b+b^2c\ge3\sqrt[3]{a^2b\cdot a^2b\cdot b^2c}=3\sqrt[3]{a^3b^3\cdot abc}=3ab\)

Tương tự: \(b^2c+b^2c+c^2a\ge3bc;c^2a+c^2a+a^2b\ge3ca\)

\(\Rightarrow a^2b+a^2b+b^2c+b^2c+b^2c+c^2a+c^2a+c^2a+a^2b\ge3ab+3bc+3ca\Rightarrow3\left(a^2b+b^2c+c^2a\right)\ge3\left(ab+bc+ca\right)\Rightarrow a^2b+b^2c+c^2a\ge ab+bc+ca\)

\(\Rightarrow\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\dfrac{1}{2}\left(ab+bc+ca\right)\ge ab+bc+ca-\dfrac{1}{2}\left(ab+bc+ca\right)=\dfrac{1}{2}\left(ab+bc+ca\right)\ge\dfrac{3}{2}\sqrt[3]{\left(abc\right)^2}=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
Hồng Phúc
6 tháng 3 2021 lúc 13:57
Bình luận (2)
Quoc Tran Anh Le
Xem chi tiết
Hồng Phúc
6 tháng 3 2021 lúc 5:44

C280:

Áp dụng BĐT AM-GM và BĐT BSC:

\(\dfrac{1}{\sqrt{x+3y}}+\sqrt{x+3y}\ge2\Rightarrow\dfrac{1}{\sqrt{x+3y}}\ge2-\sqrt{x+3y}\)

\(\dfrac{1}{\sqrt{y+3z}}+\sqrt{y+3z}\ge2\Rightarrow\dfrac{1}{\sqrt{y+3z}}\ge2-\sqrt{y+3z}\)

\(\dfrac{1}{\sqrt{z+3x}}+\sqrt{z+3x}\ge2\Rightarrow\dfrac{1}{\sqrt{z+3x}}\ge2-\sqrt{z+3x}\)

\(\Rightarrow P=\dfrac{1}{\sqrt{x+3y}}+\dfrac{1}{\sqrt{y+3z}}+\dfrac{1}{\sqrt{z+3x}}\)

\(\ge6-\left(\sqrt{x+3y}+\sqrt{y+3z}+\sqrt{z+3x}\right)\)

\(\ge6-\sqrt{3\left(x+3y+y+3z+z+3x\right)}\)

\(=6-\sqrt{12\left(x+y+z\right)}=3\)

\(minP=3\Leftrightarrow a=b=c=\dfrac{1}{4}\)

Bình luận (0)
 Mashiro Shiina
6 tháng 3 2021 lúc 10:06

Bài 7) 

\(bđt\Leftrightarrow4\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow a^3+b^3+c^3+4ab\left(a+b\right)+4bc\left(b+c\right)+4ac\left(a+c\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow4ab\left(a+b\right)+4bc\left(b+c\right)+4ac\left(a+c\right)\ge3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)+6abc\)\(\Leftrightarrow ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\ge6abc\)

\(\Leftrightarrow\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

(Đúng theo Cô Si)

"=" khi a=b=c=1

Bình luận (0)
Nguyễn Trọng Chiến
6 tháng 3 2021 lúc 14:09

281:

Ta có:\(ab+bc+ca=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

\(\dfrac{1}{\sqrt{a^3+b}}\le\dfrac{1}{\sqrt{2\sqrt{a^3b}}}=\dfrac{1}{\sqrt{2a}\cdot\sqrt[4]{ab}}\le\dfrac{1}{2\sqrt{2a}}\cdot\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}\right)=\dfrac{1}{2\sqrt{2}}\left(\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\right)\le\dfrac{1}{2\sqrt{2}}\cdot\left[\dfrac{1}{a}+\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\right]=\dfrac{1}{2\sqrt{2}}\cdot\left(\dfrac{1}{a}+\dfrac{1}{2a}+\dfrac{1}{2b}\right)\) Chứng minh tương tự:

\(\dfrac{1}{\sqrt{b^3+c}}\le\dfrac{1}{2\sqrt{2}}\cdot\left(\dfrac{1}{b}+\dfrac{1}{2b}+\dfrac{1}{2c}\right);\dfrac{1}{\sqrt{c^3+a}}\le\dfrac{1}{2\sqrt{2}}\cdot\left(\dfrac{1}{c}+\dfrac{1}{2c}+\dfrac{1}{2a}\right)\)\(\Rightarrow\dfrac{1}{\sqrt{a^3+b}}+\dfrac{1}{\sqrt{b^3+c}}+\dfrac{1}{\sqrt{c^3+a}}\le\dfrac{1}{2\sqrt{2}}\left(\dfrac{1}{a}+\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{b}+\dfrac{1}{2b}+\dfrac{1}{2c}+\dfrac{1}{c}+\dfrac{1}{2c}+\dfrac{1}{2a}\right)=\dfrac{1}{2\sqrt{2}}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{3}{\sqrt{2}}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Trần Minh Hoàng
4 tháng 3 2021 lúc 19:49

Bài nào đó k ghi số nên không bt gọi ntn:

Chuẩn hóa x + y + z = 3. Ta cần cm \(x^2y+y^2z+z^2x+xyz\le4\).

Giả sử \(z=mid\left\{x,y,z\right\}\Rightarrow\left(x-z\right)\left(y-z\right)\le0\)

\(\Leftrightarrow xy+z^2\le xz+yz\)

\(\Leftrightarrow x^2y+xz^2\le x^2z+xyz\).

Từ đó \(x^2y+y^2z+z^2x+xyz\le x^2z+xyz+y^2z+xyz=z\left(x+y\right)^2\le\dfrac{\dfrac{\left(2z+x+y+x+y\right)^3}{27}}{2}=4\).

 

Bình luận (0)
Hồng Phúc
4 tháng 3 2021 lúc 19:53

Câu cuối:

Áp dụng BĐT BSC:

\(\dfrac{a}{\sqrt{a^2+b+c}}=\sqrt{\dfrac{a^2}{a^2+b+c}}=\sqrt{\dfrac{a^2\left(1+b+c\right)}{\left(a^2+b+c\right)\left(1+b+c\right)}}\le\sqrt{\dfrac{a^2\left(1+b+c\right)}{\left(a+b+c\right)^2}}\le\dfrac{a\sqrt{1+b+c}}{a+b+c}\)

Tương tự \(\dfrac{b}{\sqrt{b^2+c+a}}=\le\dfrac{b\sqrt{1+c+a}}{a+b+c}\)\(\dfrac{c}{\sqrt{c^2+a+b}}=\le\dfrac{c\sqrt{1+a+b}}{a+b+c}\)

Khi đó \(VT\le\Sigma\left(\dfrac{a}{a+b+c}.\sqrt{1+b+c}\right)\)

Giả sử \(a\ge b\ge c\)

Áp dụng BĐT Chebyshev với bộ \(\dfrac{a}{a+b+c};\dfrac{b}{a+b+c};\dfrac{c}{a+b+c}\) và \(\sqrt{1+b+c};\sqrt{1+c+a};\sqrt{1+a+b}\):

\(VT\le\dfrac{1}{3}\Sigma\dfrac{a}{a+b+c}.\Sigma\sqrt{1+a+b}=\dfrac{\Sigma\sqrt{1+a+b}}{3}\)

\(\le\dfrac{\sqrt{3\left(3+2a+2b+2c\right)}}{3}\)

\(\le\dfrac{\sqrt{9+6\sqrt{3\left(a^2+b^2+c^2\right)}}}{3}=\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Bình luận (0)
Nguyễn Trọng Chiến
4 tháng 3 2021 lúc 19:54

Bài 1 GPT: \(x^2+2018\sqrt{2x^2+1}=x+1+2018\sqrt{x^2+x+1}\)(1) ĐKXĐ: \(\forall x\in R\)

(1) \(\Leftrightarrow x^2-x-1+2018\sqrt{2x^2+1}-2018\sqrt{x^2+x+1}=0\)

\(\Rightarrow x^2-x-1+2018\cdot\dfrac{\left(\sqrt{2x^2+1}-\sqrt{x^2+x+2}\right)\left(\sqrt{2x^2+1}+\sqrt{x^2+x+2}\right)}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}=0\)

\(\Leftrightarrow x^2-x-1+2018\cdot\dfrac{\left(x^2-x-1\right)}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}=0\)

\(\Leftrightarrow\left(x^2-x-1\right)\left(1+\dfrac{2018}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}\right)=0\)

\(\Leftrightarrow x^2-x-1=0\) vì \(1+\dfrac{2018}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}>1>0\forall x\)

\(\Leftrightarrow x^2-x+\dfrac{1}{4}-\dfrac{5}{4}=0\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\) Vậy...

Bình luận (1)
Quoc Tran Anh Le
Xem chi tiết
Justasecond
3 tháng 3 2021 lúc 19:57
Bình luận (0)
 Mashiro Shiina
3 tháng 3 2021 lúc 20:04

Câu 266 là >= chứ nhỉ?

Bình luận (1)
Justasecond
3 tháng 3 2021 lúc 20:10

Câu 5 (có chữ HẾT (.❛ ᴗ ❛.) )

Đặt \(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)

Ta có:

\(a\ge0\Rightarrow b^3+1\ge1\Rightarrow a\sqrt{b^3+1}\ge a\)

Hoàn toàn tương tự, ta có: \(\left\{{}\begin{matrix}b\sqrt{c^3+1}\ge b\\c\sqrt{a^3+1}\ge c\end{matrix}\right.\)

Cộng vế: \(P\ge a+b+c=3\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị

\(a\sqrt{b^3+1}=a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\dfrac{1}{2}a\left(b^2+2\right)=\dfrac{1}{2}ab^2+a\)

Tương tự: \(b\sqrt{c^3+1}\le\dfrac{1}{2}bc^2+b\) ; \(c\sqrt{a^3+1}\le\dfrac{1}{2}ca^2+c\)

Cộng vế: \(P\le\dfrac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)

Không mất tính tổng quát, giả sử \(a=mid\left\{a;b;c\right\}\)

\(\Rightarrow\left(a-b\right)\left(a-c\right)\le0\Leftrightarrow a^2+bc\le ac+ab\Rightarrow ca^2+bc^2\le ac^2+abc\)

\(\Rightarrow ab^2+bc^2+ca^2\le ab^2+ac^2+abc\le ab^2+ac^2+2abc=a\left(b+c\right)^2\)

\(\Rightarrow ab^2+bc^2+ca^2\le\dfrac{1}{2}.2a\left(b+c\right)\left(b+c\right)\le\dfrac{1}{54}\left(2a+2b+2c\right)^3=4\)

\(\Rightarrow P\le\dfrac{1}{2}.4+3=5\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;2;0\right)\) và 1 số hoán vị

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Justasecond
2 tháng 3 2021 lúc 19:47

2.

\(\left(a+b\right)^2\ge4ab\ge16\Rightarrow a+b\ge4\)

\(\dfrac{a^2+b^2}{a+b}\ge\dfrac{\left(a+b\right)^2}{2\left(a+b\right)}=\dfrac{a+b}{2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{a+b}{2}\ge\dfrac{6}{a+b-1}\)

\(\Leftrightarrow\left(a+b\right)\left(a+b-1\right)-12\ge0\)

\(\Leftrightarrow\left(a+b-4\right)\left(a+b+3\right)\ge0\) (luôn đúng với mọi \(a+b\ge4\))

Dấu "=" xảy ra khi \(a=b=2\)

Bình luận (0)
Justasecond
2 tháng 3 2021 lúc 19:50

Câu cuối:

Ta chứng minh BĐT phụ sau: với mọi x;y;z dương, ta luôn có: \(\dfrac{x^3+y^3}{x^2+y^2}\ge\dfrac{x+y}{2}\)

Thật vậy, bất đẳng thức tương đương:

\(2\left(x^3+y^3\right)\ge\left(x+y\right)\left(x^2+y^2\right)\)

\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (đúng)

Áp dụng:

\(P\ge\dfrac{a+b}{2}+\dfrac{b+c}{2}+\dfrac{c+a}{2}=a+b+c\ge6\)

\(P_{min}=6\) khi \(a=b=c=2\)

Bình luận (0)
Trần Minh Hoàng
2 tháng 3 2021 lúc 20:09

7:

a) Đặt \(\left(x,y\right)=\left(\dfrac{1}{a},\dfrac{1}{b}\right)\).

Ta có \(x+y=2\).

BĐT cần chứng minh trở thành:

\(\dfrac{x}{2+x^2}+\dfrac{y}{2+y^2}\le\dfrac{2}{3}\).

Ta có \(\dfrac{x}{2+x^2}+\dfrac{y}{2+y^2}=\dfrac{x}{2}+\dfrac{y}{2}-\left[\dfrac{x^3}{2\left(2+x^2\right)}+\dfrac{y^3}{2\left(2+y^2\right)}\right]=1-\dfrac{1}{2}\left[\dfrac{x^3}{2+x^2}+\dfrac{y^3}{2+y^2}\right]\).

Mặt khác ta có \(\dfrac{x^3}{2+x^2}-\left(\dfrac{7}{9}x-\dfrac{4}{9}\right)=\dfrac{2\left(x-1\right)^2\left(x+4\right)}{9\left(x^2+2\right)}\ge0\)

\(\Rightarrow\dfrac{x^3}{2+x^2}\ge\dfrac{7}{9}x-\dfrac{4}{9}\).

Tương tự, \(\dfrac{y^3}{2+y^2}\ge\dfrac{7}{9}y-\dfrac{4}{9}\).

Do đó \(\dfrac{x^3}{2+x^2}+\dfrac{y^3}{2+y^2}\ge\dfrac{7}{9}\left(x+y\right)-\dfrac{8}{9}=\dfrac{2}{3}\).

\(\Rightarrow\dfrac{x}{2+x^2}+\dfrac{y}{2+y^2}=1-\dfrac{1}{2}\left[\dfrac{x^3}{2+x^2}+\dfrac{y^3}{2+y^2}\right]\le\dfrac{2}{3}\).

BĐT dc cm. Đẳng thức xảy ra khi và chỉ khi x = y = 1.

 

 

 

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 22:51

Còn tưởng giải bài tập cơ XD

Bình luận (2)
Lê Thu Dương
28 tháng 2 2021 lúc 22:52

Eo AD có tâm quá điii..

Bình luận (6)
HT2k02
1 tháng 3 2021 lúc 17:06

Không có mô tả ảnh.

Bình luận (0)
Ngố ngây ngô
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 16:53

`4)(2x^3+3x)/(7-2x)>\sqrt{2-x}(x<=2)`

`<=>(2x^3+3x^2)/(7-2x)-1>\sqrt{2-x}-1`

`<=>(2x^3+3x^2+2x-7)/(7-2x)-((\sqrt{2-x}-1)(\sqrt{2-x}+1))/(\sqrt{2-x}+1)>0`

`<=>(2x^3-2x^2+5x^2-5x+7x-7)/(7-2x)-(1-x)/(\sqrt{2-x}+1)>0`

`<=>((x-1)(2x^2+5x+7))/(7-2x)+(x-1)/(\sqrt{2-x}+1)>0`

`<=>(x-1)((2x^2+5x+7)/(7-2x)+1/(\sqrt{2-x}+1))>0`

`<=>x>1` do `x<=2=>7-2x>0,2x^2+5x+7>0 AA x,\sqrt{2-x}>0,1>0`

`=>(2x^2+5x+7)/(7-2x)+1/(\sqrt{2-x}+1)>0`

`=>1<x<=2`

Bình luận (0)
Yeutoanhoc
28 tháng 2 2021 lúc 17:06

Câu 1:

$\begin{cases}14x^2-21y^2-6x+45y-4=0\\35x^2+28y^2+41x-122y+56=0\\\end{cases}$

`<=>` $\begin{cases}686x^2-1028y^2-174x+294y-196=0\\525x^2+420y^2+615x-1830y+840\\\end{cases}$

Lấy pt đầu trừ pt dưới

`<=>161x^2+483y-1127-483xy-1449y+3381+218x+654y-1519=0`

`<=>161x(x+3y-7)-483y(x+3y-7)+218(x+3y-7)=0`

`<=>(x+3y-7)(161x-483y+218)=0`

Đến đây chia 2 th ta được `(x,y)=(-2,3),(1,2)`

Bình luận (5)
Justasecond
28 tháng 2 2021 lúc 17:50

Câu 5:

\(2\ge a^2+c^2+b^2\ge2\left|ac\right|+b^2\ge2\left|ac\right|\Rightarrow-1\le ac\le1\)

\(2\ge a^2+b^2+c^2\Leftrightarrow2-2ab-2bc+2ca\ge a^2+b^2+c^2-2ab-2bc+2ca\)

\(\Rightarrow2-2ab-2bc+2ca\ge\left(a+c-b\right)^2\ge0\)

\(\Rightarrow1-ab-bc+ca\ge0\)

\(\Rightarrow-ab-bc\ge-ca-1\)

\(\Rightarrow P\ge2021ca-ca-1=2020ca-1\ge-2020-1=-2021\)

\(P_{min}=-2021\) khi \(\left(a;b;c\right)=\left(1;0;-1\right)\) hoặc \(\left(-1;0;1\right)\)

 

Bình luận (0)