Violympic toán 9

Quoc Tran Anh Le

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Hi vọng chuyên mục đầu tiên của chuỗi cuộc thi sẽ mang lại niềm vui và trải nghiệm thú vị cho các bạn. Những câu hỏi được chọn sẽ khả năng cao được đưa lên chuyên mục Câu hỏi hay. 

*Lưu ý mình sẽ duyệt những câu hỏi đạt đến độ khó nhất định, để cả cộng đồng cùng giải. Những bài toán chưa được duyệt nhưng các bạn chưa có lời giải, các bạn hãy gửi trực tiếp câu hỏi lên Hoc24 nhé!

-------------------------------------------------------------------

[Toán.C10 _ 14.1.2021]

Người biên soạn câu hỏi: Bách Khoa Huỳnh

Cho một đa giác đều 12 cạnh. Hỏi có bao nhiêu cách tô màu cách đỉnh của đa giác đó bằng ba màu đỏ, xanh, vàng. Biết rằng hai cách tô được gọi là giống nhau nếu như tồn tại một phép quay hoặc tồn tại một phép lật mặt đa giác biến đa giác này thành đa giác kia.

[Toán.C11 _ 14.1.2021]

Người biên soạn câu hỏi: Trần Minh Hoàng

Cho a, b là số đo các góc nhọn thỏa mãn tan a =\(\dfrac{1}{2}\) và tan b = \(\dfrac{1}{3}\). Chứng minh a + b = \(45^o\).

------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Sigma
Sigma CTV Hôm kia lúc 8:48

Cho hỏi về C11. Phép lật mặt là gì vậy ạ :v

Bình luận (1)
Yehudim
Yehudim Hôm qua lúc 23:28

Toán.C11:

\(a+b=45^0\Rightarrow\cos\left(a+b\right)=\dfrac{\sqrt{2}}{2}\Leftrightarrow\cos a.\cos b-\sin a.\sin b=\dfrac{\sqrt{2}}{2}\) (1)

\(\tan a=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}\sin a=\dfrac{\sqrt{5}}{5}\\\cos\alpha=\dfrac{2}{5}\sqrt{5}\end{matrix}\right.\)

\(\tan b=\dfrac{1}{3}\Rightarrow\left\{{}\begin{matrix}\sin b=\dfrac{\sqrt{10}}{10}\\\cos b=\dfrac{3}{10}\sqrt{10}\end{matrix}\right.\)

Thay vô vế trái của 1 sẽ ra đpcm

P/s: Chắc phải có cách nào hay hơn cái cách toàn tính toẹt hết ra như vầy :v

 

Bình luận (0)
Yehudim
Yehudim Hôm qua lúc 23:35

À cái này cũng được, khỏi tính toán mất công nhiều, ghép công thức vô là ra

\(\tan\left(a+b\right)=1\)

\(tan\left(a+b\right)=\dfrac{\tan a+\tan b}{1-\tan a.\tan b}=1\Rightarrow dpcm\)

P/s: Mà bài này dành cho c2 hay c3 vậy? C2 thì chưa học biến đổi mấy ct lượng giác kia :v

Bình luận (3)
Quoc Tran Anh Le

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Hi vọng chuyên mục đầu tiên của chuỗi cuộc thi sẽ mang lại niềm vui và trải nghiệm thú vị cho các bạn. Những câu hỏi được chọn sẽ khả năng cao được đưa lên chuyên mục Câu hỏi hay. Lưu ý mỗi ngày mình sẽ đăng tối đa 4 câu hỏi cùng một môn học.

Ngày mai đến chuyên mục Vật lí nhé :>

-------------------------------------------------------------------

[Toán.C6 _ 13.1.2021]

Người biên soạn câu hỏi: Hồng Phúc

Cho \(a,b,c,d\in\left[0;1\right]\).

Chứng minh rằng: \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)+a+b+c+d\ge1\).

[Toán.C7 _ 13.1.2021]

Người biên soạn câu hỏi: Hồng Phúc

Cho hình vuông ABCD cạnh 1. Gọi M,N di động trên AD, CD sao cho góc MBN là góc nửa vuông.

Chứng minh: \(\sqrt{2}-1\le S_{BMN}\le\dfrac{1}{2}\)

[Toán.C8 _ 13.1.2021]

Người biên soạn câu hỏi: Võ Phan Phương Ngọc.

Nhà An cách trường khoảng 3km. Trường An tổ chức học tập trải nghiệm cho khối 9 vào cuối học kỳ I. An rời nhà lúc 6 giờ sáng và xe du lịch đến đón học sinh để xuất phát từ trường đi đến Đà Lạt với vận tốc trung bình 45 km/h.

a) Viết công thức biểu diễn quãng đường y(km) từ nhà An đến Đà Lạt theo thời gian x(giờ) mà xe di chuyển từ trường đến Đà Lạt.

b) Biết khoảng cách từ nhà An đến Đà Lạt khoảng 318km và trên đường di chuyển xe có nghỉ ngơi 1 giờ 30 phút. Tính thời điểm xe phải xuất phát từ trường để đến nơi vào lúc 15 giờ.

[Toán.C9 _ 13.1.2021] 

Người biên soạn câu hỏi: Nguyễn Đăng Mạnh Dũng

Cho hình chữ nhật ABCD. Trên đường chéo BD lấy điểm P sao cho BP < DP. Gọi M là điểm đối xứng của A qua P. Gọi E và F là hình chiếu của M trên BC và CD.

a) Tứ giác BMCD là hình gì?

b) Chứng minh EF // AC.

c) Chứng minh ba điểm: E, F, P thẳng hàng.

d) Gọi I là giao điểm của BC và DM. Giả sử diện tích tam giác CIM = 16cm^2, diện tích tam giác BID = 25cm^2. Tính diện tích tứ giác BMCD.

------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Sigma
Sigma CTV 13 tháng 1 lúc 22:20

Câu 6: Thử làm phát :v

Bất đẳng thức cần chứng minh tương đương với:

\(1-a-b-c-d+ab+bc+cd+da+ac+bd-abc-bcd-cda-dab+abcd+a+b+c+d\ge1\)

\(\Leftrightarrow ab+bc+cd+da+ac+bd-abc-bcd-cda-dab+abcd\ge0\).

Điều trên luôn đúng do \(a,b,c,d\in\left[0;1\right]\).

(Hy vọng sẽ có cách khác chứ nhân ra ntn nhìn phức tạp quá).

Bình luận (0)
Yehudim
Yehudim 13 tháng 1 lúc 21:14

Mong mấy câu Vật Lý ngày mai sẽ khó hơn câu Toán.C8 một chút

a/ Quãng đường từ trường đến Đà Lạt:

\(S=vx=45x\left(km\right)\)

\(\Rightarrow y=3+45x\left(km\right)\)

b/ Từ trường đến Đà Lạt: 318-3= 315(km)

\(\Rightarrow x=\dfrac{315}{45}=7\left(h\right)\)

Thêm thời gian nghỉ 1,5h

\(\Rightarrow t=x+1,5=8,5\left(h\right)\)

\(\Rightarrow15-8,5=6,5\left(h\right)\)

Vậy xe xuất phát từ 6h 30'.

Và bạn An phải đi với vận tốc: \(\dfrac{3}{0,5}=6\left(km/h\right)\)

Bình luận (1)
Yehudim
Yehudim 13 tháng 1 lúc 21:16

Mà hình như câu Toán.C7 có người trả lời trên đây rồi mà?

Bình luận (2)
Quoc Tran Anh Le

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Hi vọng chuyên mục đầu tiên của chuỗi cuộc thi sẽ mang lại niềm vui và trải nghiệm thú vị cho các bạn. Những câu hỏi được chọn sẽ khả năng cao được đưa lên chuyên mục Câu hỏi hay.

Lưu ý, mỗi môn học có ít nhất 2 câu hỏi được duyệt mới đăng lên chuyên mục. Vậy hãy gửi ngay những câu bạn thấy hay và xứng đáng xuất hiện trong chuyên mục ngay :>

-------------------------------------------------------------------

[Toán.C4 _ 12.1.2021]

Người biên soạn câu hỏi: No name

Giải phương trình: \(\sqrt{5x^2+14x+9}+\sqrt{x^2-x-20}=5\sqrt{x+1}\)

[Toán.C5 _ 12.1.2021]

Người biên soạn câu hỏi: Quoc Tran Anh Le

Cho a,b,c đôi một khác nhau. Chứng minh rằng:

\(\dfrac{a^2+b^2}{\left(a-b\right)^2}+\dfrac{b^2+c^2}{\left(b-c\right)^2}+\dfrac{a^2+c^2}{\left(a-c\right)^2}\ge\dfrac{5}{2}\).

------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Sigma
Sigma CTV 12 tháng 1 lúc 21:38

C4. Có cái tên của người biên soạn mà cũng giấu =))

Bình luận (4)
Quoc Tran Anh Le

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Hi vọng chuyên mục đầu tiên của chuỗi cuộc thi sẽ mang lại niềm vui và trải nghiệm thú vị cho các bạn. Những câu hỏi được chọn sẽ khả năng cao được đưa lên chuyên mục Câu hỏi hay. Tuy nhiên, với mục đích hỏi bài và trao đổi bài tập, các bạn hãy gửi câu hỏi lên hoc24 và cùng cộng đồng giải nhé!

-------------------------------------------------------------------

[Toán.C2 _ 10.1.2021] 

Người biên soạn câu hỏi: No name

Cho x, y, z > 0 thỏa mãn \(x^2+y^2+z^2+2xyz=1\). Tìm max:

P = xy + yz + zx - xyz.

[Toán.C3_10.1.2021]

Người biên soạn câu hỏi: Võ Phan Phương Ngọc

Cho tập hợp A = {-1,-2,...,-n}. Với mỗi tập con khác rỗng của A, chúng ta lập tích của các phần tử trong tập đó. Hỏi tổng của tất cả các tích thu được bằng bao nhiêu?

------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Sigma
Sigma CTV 10 tháng 1 lúc 19:02

Vì C2 mình gửi nên mình làm câu 3:

Gọi S(n) là tổng tất cả các tích thu được.

Ta chứng minh bằng quy nạp rằng S(n) = -1 với mọi giá trị của n là số tự nhiên khác 0.

Thật vây, ta có S(1) = -1

Giả sử ta đã có S(n) = -1.

Ta cần chứng minh S(n + 1) = -1.

Ta thấy sau khi thêm tập hợp A = {-1; -2;,,,; -n} một phần tử -(n + 1), tập hợp A tăng thêm số tập hợp con bằng số tập hợp con của tập hợp A lúc đầu.

Do đó: \(S\left(n+1\right)-S\left(n\right)=S\left(n\right).\left[-\left(n+1\right)\right]-\left(n+1\right)=n+1-n-1=0\Rightarrow S\left(n+1\right)=S\left(n\right)=-1\).

Vậy ta có đpcm.

 

Bình luận (5)
Nguyễn Văn Đạt
Nguyễn Văn Đạt 10 tháng 1 lúc 22:11

Toán C.2 :

Ta có : \(P=xy+yz+zx-xyz\Leftrightarrow2P=2.\left(xy+yz+zx\right)-2xyz\)

\(=2.\left(xy+yz+zx\right)+x^2+y^2+z^2-1\)

\(=\left(x+y+z\right)^2-1\)

Vì : \(x^2+y^2+z^2+2xyz=1\)

\(\Rightarrow z^2+2xyz=1-x^2-y^2\)

\(\Rightarrow z^2+2xyz+x^2y^2=1-x^2-y^2+x^2y^2\)

\(\Rightarrow\left(z+xy\right)^2=\left(1-x^2\right)\left(1-y^2\right)\le\left(\dfrac{2-x^2-y^2}{2}\right)^2\)

\(\Rightarrow z+xy\le\dfrac{2-x^2-y^2}{2}\Rightarrow z\le\dfrac{2-x^2-y^2-2xy}{2}=\dfrac{2-\left(x+y\right)^2}{2}\)

Có : \(\left(x+y-1\right)^2\ge0\)

\(\Leftrightarrow\left(x+y\right)^2-2.\left(x+y\right)+1\ge0\)

\(\Leftrightarrow x+y\le\dfrac{\left(x+y\right)^2+1}{2}\)

\(\Leftrightarrow x+y+z\le\dfrac{\left(x+y\right)^2+1}{2}+\dfrac{2-\left(x+y\right)^2}{2}=\dfrac{3}{2}\)

\(\Rightarrow\left(x+y+z\right)^2-1\le\dfrac{5}{4}\) 

\(\Rightarrow2P\le\dfrac{5}{4}\Rightarrow P\le\dfrac{5}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{2}\)

Bình luận (5)
Lê Huỳnh Tú
Lê Huỳnh Tú 10 tháng 1 lúc 23:26

E ms học code nên e hay tìm các trang toán để lập code giải ạ. Ad có thể xem giúp e bài code này dc k ạ

#include<iostream> using namespace std; int main() {int n; cin >> n;int tong = 0, tich = 1, a[n];for(int i = 0; i <= n - 1; i ++) a[i] = -(i + 1);for(int i = 1; i <= n; i ++) {for(int j = 0; j <= n - i; j ++) {tich = 1;for(int k = j; k <= k + i - 1; k ++) {tich = tich * a[j];}tong = tong + tich;}}cout << tong;return 0;}
Bình luận (3)
Quoc Tran Anh Le

Trong thời gian cuộc thi Toán Tiếng Anh VEMC đang được chuẩn bị để mang đến những trải nghiệm tốt nhất cho người tham gia, mình xin được đăng một số câu hỏi hay trong bất kì các môn ngẫu nhiên để cho thành viên cộng đồng hoc24 có cơ hội được thử sức chính mình. Tuy nhiên do vốn câu hỏi của mình hạn chế nên mình cần sự giúp đỡ của cộng đồng. Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Hi vọng chuyên mục đầu tiên của chuỗi cuộc thi sẽ mang lại niềm vui và trải nghiệm thú vị cho các bạn. Bây giờ, hãy cùng thử câu hỏi đầu tiên của chuyên mục.

-------------------------------------------------------------------------------------------------

[Toán.C1 _ 7.1.2021] 

Người biên soạn câu hỏi: Quoc Tran Anh Le

Tổng quát cho bđt Iran 1996:

Cho x, y, z là các số thực không âm thỏa mãn không có hai số nào đồng thời bằng 0. k là tham số, k > 0. CMR:

\(\left(xy+yz+zx\right)\left(\dfrac{1}{\left(kx+y\right)^2}+\dfrac{1}{\left(ky+z\right)^2}+\dfrac{1}{\left(kz+x\right)^2}\right)\ge\dfrac{9}{\left(k+1\right)^2}\)

-----------------------------------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Sigma
Sigma CTV 8 tháng 1 lúc 10:04

Giờ mới biết bđt Iran 1996. Có cả tổng quát nữa :v

Bình luận (8)
tthnew
tthnew 10 tháng 1 lúc 17:46

Câu này em có đăng rồi thì phải.

Bình luận (2)
Trần Bình Phương
Trần Bình Phương 11 tháng 1 lúc 12:39

hông biết tự chịu

Bình luận (0)
Quoc Tran Anh Le

THÔNG BÁO GIỚI THIỆU VỀ TIỀN SỰ KIỆN CUỘC THI TOÁN TIẾNG ANH VEMC MÙA THỨ TƯ (2020)

Xin chào mọi người! Cho phép mình tự giới thiệu mình là chủ thớt cuộc thi Toán Tiếng Anh mấy mùa đã qua =))) Hiện nay cuộc thi đã bước sang mùa thứ tư nên mình muốn làm một dự án đặc biệt cho năm này mà ai, bất cứ độ tuổi và ngành nghề nào, cũng có thể tham gia.Vậy nên đầu tiên mình đã tạo nên trang facebook của cuộc thi:

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Mong mọi người ủng hộ trang facebook này. Đừng quên like và follow page để cập nhật những thông tin mới nhất nhé!

Tiết lộ một chút: Năm nay dự kiến có gì thay đổi? Mùa thứ tư này sẽ bao gồm có tiền sự kiện, sự kiện chính và hậu sự kiện trải dài trong năm, cao điểm là mùa hè! Mong chờ chứ? Hãy theo dõi và ủng hộ cuộc thi nhé! P/s: Tiền sự kiện là sự kiện mà fan hâm mộ trinh thám chắc chắn sẽ hóng chờ đó!!!

santa
santa 28 tháng 12 2020 lúc 17:53

nghe vui thật đấy nhưng em không có fb :'((

Bình luận (4)
Bạch Nhiên
Bạch Nhiên 28 tháng 12 2020 lúc 17:58

''P/s: Tiền sự kiện là sự kiện mà fan hâm mộ trinh thám chắc chắn sẽ hóng chờ đó!!!''-Đoạn này là sao hả a ._.? Sự kiện gì thế..:)

Chúc cuộc thi thành công chói như ánh sáng của Đảng :>

À chiều nay mình vừa mới thi xong nha các bae =))

Bình luận (2)
Bánh Đậu Xanh
Bánh Đậu Xanh 28 tháng 12 2020 lúc 18:22

Em k có f ạ

Bình luận (5)
Đỗ Viết Ngọc Cường
Đỗ Viết Ngọc Cường 23 tháng 7 2018 lúc 20:39

ko

Bình luận (0)
Nguyễn Xuân Tiến 24
Nguyễn Xuân Tiến 24 23 tháng 7 2018 lúc 21:26

Có, chẳng hạn \(\sqrt{\dfrac{1}{2}}+\sqrt{\dfrac{1}{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\) (với \(a=b=\dfrac{1}{2}\in Q\))

Bình luận (0)
Hung nguyen
Hung nguyen 24 tháng 7 2018 lúc 8:24

Với mọi a, b thỏa mãn

\(\left\{{}\begin{matrix}a=\sqrt{2n^2}\\b=\sqrt{2\left(1-n\right)^2}\end{matrix}\right.\)\(\left(0< n< 1,n\in Q\right)\)

Bình luận (0)
Azuki Tsukishima
Azuki Tsukishima 23 tháng 7 2018 lúc 20:13

Từ giả thiết : \(a+b+c=abc\)\(a^2=bc\)

\(b+c=a^3-a\)

⇒ b và c là hai nghiệm của phương trình : \(x^2-\left(a^3-a\right)x+a^2=0\left(1\right)\)

\(\text{Δ}=\left(a^3-a\right)^2-\left(2a\right)^2=\left(a^3-a-2a\right)\left(a^3-a+2a\right)=\left(a^3-a\right)\left(a^3-3a\right)=a^2\left(a^2+1\right)\left(a^2-3\right)\) Vì (1) có nghiệm nên \(\text{Δ}=a^2\left(a^2+1\right)\left(a^2-3\right)\text{ ≥}0\)

\(a^2>0;a^2+1>0\) nên \(a^2-3\text{ ≥}0\) hay \(a^2\text{ ≥}3\)

Bình luận (2)
Mysterious Person
Mysterious Person 21 tháng 7 2018 lúc 17:46
Bình luận (0)
Mysterious Person
Mysterious Person 21 tháng 7 2018 lúc 19:17

\(a;b\in\left[\dfrac{1}{4};2\right]\)

Bình luận (1)
Liana
Liana 21 tháng 7 2018 lúc 20:45

Em chỉ biết tính P thôi được hemm? :vv

Bình luận (2)
Loading...

Khoá học trên OLM của Đại học Sư phạm HN