Violympic toán 8

Yeutoanhoc
17 tháng 5 lúc 20:23

Gọi tuổi anh,tuổi bố,tuổi ông lần lượt là `a,b,c(a<b<c)(a,b,c in N^**)`

 Biết rằng tuổi của bố Anh có bao nhiêu ngày thì tuổi của Anh có bấy nhiêu tuần mà một tuần có bảy ngày

`=>b=7a`

Tuổi của ông Anh có bao nhiêu năm thì tuổi của Anh có bấy nhiêu tháng mà một năm có 12 tháng

`=>c=12a`

Theo bài:`a+b+c=100`

`=>a+7a+12a=100`

`=>20a=100`

`=>a=5`

`=>b=7a=35`

`=>c=12a=60`

Vậy tuổi của anh,bố,ông lần lượt là 5,35,60 tuổi

Bình luận (2)

                                                 Bài làm :

Nếu tuổi bố Anh bao nhiêu ngày thì tuổi tuổi Anh bấy nhiêu tuần => Anh  = 1/7 tuổi bố vì 1 tuần có 7 ngày .

Nếu ông Anh bao nhiêu năm thì Anh bấy nhiêu tháng => tuổi Anh = 1/12 tuổi ông vì 1 năm có 12 tháng .

Ví tuổi Anh = 1/7 tuối bố và = 1/12 tuổi ông nên ta có tuổi Anh là 1 phần bằng nhau thì tuổi của bố là 7 phần và tuổi ông là 12 phần như thế        .        

Tổng số phần tuổi 3 người là :        12 +7 +1 = 20 ( phần ) .

Tuổi của Anh là :       100 : 20 x 1 = 5 ( tuổi) .

Tuổi của bố Anh là :          5 x 7 = 35 ( tuổi ) .

Tuổi của ông Anh là :      5 x 12 = 60 ( tuổi) .

 Vậy Anh 5 tuổi , bố Anh 35 tuổi và ông Anh 60 tuổi .

 

Bình luận (7)
Akai Haruma
29 tháng 3 lúc 23:13

1. 

Câu 1:

a) $CD\perp AC, BH\perp AC$ nên $CD\parallel BH$

Tương tự: $BD\parallel CH$

Tứ giác $BHCD$ có hai cặp cạnh đối song song nhau (BH-CD và BD-CH) nên là hình bình hành

b) 

Áp dụng bổ đề sau: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.

Ta có:

$BO$ là trung tuyến của tgv $ABD$ nên $BO=\frac{AD}{2}$

$CO$ là trung tuyến của tgv $ACD$ nên $CO=\frac{AD}{2}$

$\Rightarrow BO=CO(1)$ 

$OK\parallel AH, AH\perp BC$ nên $OK\perp BC(2)$

Từ $(1);(2)$ ta dễ thấy $\triangle OBK=\triangle OCK$ (ch-cgv)

$\Rightarrow BK=CK$ hay $K$ là trung điểm $BC$

Mặt khác:

$HBDC$ là hình bình hành nên $HD$ cắt $BC$ tại trung điểm mỗi đường. Mà $K$ là trung điểm $BC$ nên $K$ là trung điểm $HD$

Xét tam giác $AHD$ có $O$ là t. điểm $AD$, $K$ là t. điểm $HD$ nên $OK$ là đường trung bình của tam giác $AHD$ ứng với cạnh $AH$.

$\Rightarrow OK=\frac{AH}{2}=3$ (cm)

 

Bình luận (2)
Akai Haruma
29 tháng 3 lúc 23:13

Hình câu 1:

undefined

Bình luận (2)
Akai Haruma
29 tháng 3 lúc 23:23

Hai bài toán khác nhau thì bạn đặt bài toán 1 là câu 1, bài toán 2 là câu 2 cho dễ phân biệt.

Câu 2:

Gọi $AB=c; BC=a; CA=b$. Áp dụng tính chất đường phân giác thì:

$\frac{AD}{CD}=\frac{AB}{BC}=\frac{c}{a}$

$\Rightarrow \frac{b}{CD}=\frac{AC}{CD}=\frac{AD+CD}{CD}=\frac{c+a}{a}$

$\Rightarrow CD=\frac{ab}{a+c}$

Hoàn toàn tương tự:

$BE=\frac{ca}{a+b}$

Xét tam giác $CDB$ có phân giác $CI$. Áp dụng tính chất đường phân giác:

$\frac{ID}{BI}=\frac{CD}{BC}=\frac{ab}{a(a+c)}=\frac{b}{a+c}$

$\Rightarrow \frac{BD}{BI}=\frac{a+b+c}{a+c}$

Tương tự với tam giác $BEC$ phân giác $BI$ thì: $\frac{CE}{CI}=\frac{a+b+c}{a+b}$

Thay vô điều kiện $BD.CE=2BI.CI$ thì:

$\frac{BD}{BI}.\frac{CE}{CI}=2$

$\Leftrightarrow \frac{(a+b+c)^2}{(a+c)(a+b)}=2$

$\Leftrightarrow a^2=b^2+c^2$ nên theo Pitago đảo thì $ABC$ là tam giác vuông tại $A$ 

$\Rightarrow \widehat{BAC}=90^0$

 

Bình luận (3)
Akai Haruma
17 tháng 3 lúc 19:25

Lời giải:

$x^{99}+x^{55}+x^n+x-7=(x^{99}+x)+(x^{55}+x)+x^n-x-7$

$=x(x^{98}+1)+x(x^{54}+1)+x^n-x-7$

Hiển nhiên: $x^{98}+1=(x^2)^{49}+1\vdots x^2+1$

$x^{54}+1=(x^2)^{27}+1\vdots x^2+1$

Xét các TH sau:

TH1: $n=4k$ thì $x^n-1=x^{4k}-1\vdots x^4-1\vdots x^2+1$. Khi đó đa thức dư là $-x-6$

TH2: $n=4k+1$ thì $x^{n}-x=x(x^{4k}-1)\vdots x^2+1$. Khi đó đa thức dư là $-7$

TH3: $n=4k+2$ thì: $x^n+1=x^{4k+2}+1=(x^2)^{2k+1}+1\vdots x^2+1$. Khi đó đa thức dư là $-x-8$

TH4: $n=4k+3$ thì $x^n+x=x^{4k+3}+x=x(x^{4k+2}+1)\vdots x^2+1$. Khi đó đa thức dư là $-2x-7$

Bình luận (0)
Nguyễn Kiên
23 tháng 3 lúc 21:30

Lấy ví du về vật có thế năng hấp dẫn so với mặt đất

 

Bình luận (0)
Akai Haruma
17 tháng 3 lúc 17:55

Lời giải:
Đặt $\sqrt{2x}=a; \sqrt{2y}=b$ thì $0\leq a,b\leq 1$

Bài toán trở thành:
CMR:

$\frac{a}{b^2+2}+\frac{b}{a^2+2}\leq \frac{2}{3}$
$\Leftrightarrow 3(a^3+b^3)+6(a+b)\leq 2a^2b^2+4(a^2+b^2)+8(I)$

--------------------------

Thật vậy:

$a^3+b^3=(a+b)(a^2-ab+b^2)\leq 2(a^2-ab+b^2)$

$\Rightarrow 3(a^3+b^3)\leq 6(a^2-ab+b^2)(1)$

$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

$\Rightarrow 6(a+b)\leq 6(ab+1)(2)$

Từ $(1);(2)\Rightarrow 3(a^3+b^3)+6(a+b)\leq 6(a^2+b^2+1)(*)$

Mà:

$6(a^2+b^2+1)-[2a^2b^2+4(a^2+b^2)+8]$

$=2(a^2+b^2-a^2b^2-1)=2(a^2-1)(1-b^2)\leq 0$

$\Rightarrow 6(a^2+b^2+1)\leq 2a^2b^2+4(a^2+b^2)+8(**)$

Từ $(*);(**)$ suy ra $(I)$ đúng. Ta có đpcm.

Dấu "=" xảy ra khi $a=b=1$

Bình luận (0)
Quoc Tran Anh Le

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 100.000đ nhé!

--------------------------------------------

[Toán.C111 _ 19.2.2021]

Giải phương trình: \(\dfrac{6a+7b}{6a}-\dfrac{3ax}{2b^2}=1-\dfrac{ax}{b^2-ab}\), với x là ẩn. Với những điều kiện nào thì phương trình có nghiệm số?

[Toán.C112 _ 19.2.2021]

Phân tích đa thức sau đây ra thừa số: \(a^{16}+a^8b^8+b^{16}\).

[Toán.C113 _ 19.2.2021]

Chứng minh rằng từ đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\) ta suy ra được \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{a^n+b^n+c^n}\) với n là số lẻ.

Nguyễn Thành Trương
19 tháng 2 lúc 20:30

C113

Ta có: \(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = \dfrac{1}{{a + b + c}} \Longrightarrow \dfrac{1}{a} + \dfrac{1}{b} = \dfrac{1}{{a + b + c}} - \dfrac{1}{c}\)

\(\begin{array}{l} \Longrightarrow \left( {a + b} \right)\left( {a + b + c} \right)c = abc - ab\left( {a + b + c} \right)\\ \Longrightarrow \left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) = 0 \end{array}\)

............

Bình luận (0)
Trương Huy Hoàng
19 tháng 2 lúc 20:43

C112:

a16 + a8b8 + b16 

= a16 + 2a8b8 + b16 - a8b8

= (a8 + b8)2 - (a4b4)2

= (a8 + b8 - a4b4)(a8 + b8 + a4b4)

Bình luận (0)

C112 : \(a^{16}+a^8b^8+b^{16}\)

\(=\left(a^8+b^8\right)^2-\left(a^4b^4\right)^2\)

\(=\left(a^8+b^8+a^4b^4\right)\left(a^8+b^8-a^4b^4\right)\)

\(=\left[\left(a^4+b^4\right)^2-\left(a^2b^2\right)^2\right].\left(a^8+b^8-a^4b^4\right)\)

\(=\left(a^4+b^4-a^2b^2\right)\left(a^4+b^4+a^2b^2\right)\left(a^8+b^8-a^4b^4\right)\)

\(=\left[\left(a^2+b^2\right)^2-\left(ab\right)^2\right]\left(a^4+b^4-a^2b^2\right)\left(a^8+b^8-a^4b^4\right)\)

\(=\left(a^2+b^2+ab\right)\left(a^2+b^2-ab\right)\left(a^4+b^4-a^2b^2\right)\left(a^8+b^8-a^4b^4\right)\)

Bình luận (0)
Trần Minh Hoàng
1 tháng 2 lúc 22:26

Sau khi thử bằng pascal thì em thấy bài này hình như có vô số nghiệm (Chắc là sai đề). Nhưng nếu ai tìm được công thức tổng quát của k thì hay biết mấy.

Bình luận (3)

K=16, K=225;

Bình luận (0)
Trương Huy Hoàng
2 tháng 2 lúc 10:10

k = 1; k = 16; k = 225 :v

Bình luận (0)
Hung nguyen
17 tháng 7 2018 lúc 10:50

Giả sử bài toán đã có đầu đủ giả thuyết cần thiết rồi. (Thiếu giả thuyết nhá bác).

\(x^3+y^3+z^3\ge\left(\dfrac{x+y}{2}\right)^3+\left(\dfrac{y+z}{2}\right)^3+\left(\dfrac{z+x}{2}\right)^3\)

\(\Leftrightarrow6\left(x^3+y^3+z^3\right)-3\left(xy^2+xz^3+yx^2+yz^2+zx^2+zy^2\right)\ge0\)

Ta có bổ đề:

\(x^3+x^3+y^3\ge3yx^2\)

Thế vô thì bài toán được chứng minh.

Bình luận (3)
Nguyễn Shinn
17 tháng 7 2018 lúc 13:50

1 cách giải khác:

\(bdt\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge\left(x+y\right)^3+\left(y+z\right)^3+\left(x+z\right)^3\)

\(\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge2\left(x^3+y^3+z^3\right)+xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)

\(\Leftrightarrow6\left(x^3+y^3+z^3\right)\ge xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)

\(\Leftrightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(y+z\right)\left(y^2-yz+z^2\right)+3\left(x+z\right)\left(x^2-xz+z^2\right)\ge xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)

\(\Leftrightarrow3\left(x+y\right)\left(x-y\right)^2+3\left(y+z\right)\left(y-z\right)^2+3\left(x+z\right)\left(x-z\right)^2=0\)

\("="\Leftrightarrow x=y=z\)

Bình luận (1)
Akai Haruma
14 tháng 7 2018 lúc 11:40

Lời giải:

Theo BĐT về tam giác: độ dài một cạnh tam giác thì nhỏ hơn tổng độ dài 2 cạnh còn lại:

\(\Rightarrow \left\{\begin{matrix} AM< MP+AP\\ AM< MN+AN\end{matrix}\right.\Rightarrow 2AM< MP+MN+AP+AN\)

Dễ nhận thấy $MN,MP$ là các đường trung bình của tam giác $ABC$

\(\Rightarrow MN=\frac{1}{2}AB; MP=\frac{1}{2}AC\)

Lại có: \(AP=\frac{1}{2}AB; AN=\frac{1}{2}AC\)

Do đó: \(2AM< \frac{1}{2}AC+\frac{1}{2}AB+\frac{1}{2}AB+\frac{1}{2}AC=AB+AC\)

\(\Rightarrow AM< \frac{AB+AC}{2}\)

Hoàn toàn TT với \(BN, CP\) suy ra:

\(AM+BN+CP< \frac{AB+AC}{2}+\frac{BC+BA}{2}+\frac{CA+CB}{2}=AB+BC+AC\)

Ta có đpcm

Bình luận (0)
Akai Haruma
8 tháng 7 2018 lúc 10:41

Lời giải:

Với \(x=\sqrt{2}\) là nghiệm. Đặt

Đặt \(x^3+ax^2+bx+c=(x+\sqrt{2})(x+m)(x+n)\)

Thực hiện khai triển:

\(\Leftrightarrow x^3+ax^2+bx+c=x^3+x^2(m+n+\sqrt{2})+x(mn+\sqrt{2}m+\sqrt{2}n)+\sqrt{2}mn\)

Đồng nhất hệ số:

\(\Rightarrow \left\{\begin{matrix} m+n+\sqrt{2}=a\\ mn+\sqrt{2}(m+n)=b\\ \sqrt{2}mn=c\end{matrix}\right.(*)\)

\(\Rightarrow \frac{c}{\sqrt{2}}+\sqrt{2}.a=b+2\)

\(\Rightarrow \sqrt{2}(b+2)=c+2a\in\mathbb{Q}\)

\(b+2\in\mathbb{Q}; \sqrt{2}\not\in\mathbb{Q}\) nên điều trên xảy ra khi \(b+2=0\Leftrightarrow b=-2\)

Do đó: \(mn+\sqrt{2}(m+n)=-2\)

\(\Leftrightarrow (m+\sqrt{2})(n+\sqrt{2})=0\Rightarrow \left[\begin{matrix} m=-\sqrt{2}\\ n=-\sqrt{2}\end{matrix}\right.\)

Không mất tq, giả sử \(m=-\sqrt{2}\Rightarrow n=a\) (theo $(*)$)

Vậy 3 nghiệm của pt là: \((\sqrt{2}; -\sqrt{2}; a)\)

Bình luận (0)
Akai Haruma
4 tháng 7 2018 lúc 15:30

Lời giải:

Đặt \((a-b,b-c,c-a)=(x,y,z)\)\(\Rightarrow x+y+z=0\).

Ta cần cm:

\(x^5+y^5+z^5\vdots 5xyz\) với \(x,y,z\neq 0\in\mathbb{Z}\)

Thật vậy:

\(x^5+y^5+z^5=(x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)+z^5\)

\(=(x+y)[x^4+4x^3y+6x^2y^2+4xy^3+y^4-5x^3y-5xy^3-5x^2y^2]+z^5\)

\(=(x+y)[(x+y)^4-5xy(x^2+y^2+xy)]+z^5\)

\(=(x+y)^5-5xy(x+y)(x^2+xy+y^2)+z^5\)

\(=(-z)^5-5xy(-z)(x^2+y^2+xy)+z^5\)

\(=5xyz(x^2+y^2+xy)\vdots 5xyz\)

Do đó ta có đpcm.

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN