Violympic toán 6

Akai Haruma
4 tháng 1 lúc 23:36

Lời giải:

Đặt $n+1=a^2$ và $2n+1=b^2$ với $a,b$ là số tự nhiên.

Vì $2n+1$ lẻ nên $b^2$ lẻ. SCP lẻ chia $4$ dư $1$ nên $2n+1$ chia $4$ dư $1$

$\Rightarrow 2n\vdots 4$

$\Rightarrow n\vdots 2$

$\Rightarrow n+1=a^2$ lẻ. Ta biết SCP lẻ chia $8$ dư $1$ nên $n+1=a^2$ chia $8$ dư $1$

$\Rightarrow n\vdots 8(1)$

Mặt khác:

Nếu $n$ chia 3 dư $1$ thì $n+1$ chia $3$ dư $2$ (vô lý vì 1 SCP chia 3 dư 0 hoặc 1)

Nếu $n$ chia $3$ dư $2$ thì $2n+1$ chia $3$ dư $2$ (cũng vô lý)

Do đó $n$ chia hết cho $3(2)$ 

Từ $(1);(2)$ mà $(3,8)=1$ nên $n\vdots 24$ (đpcm)

Bình luận (0)
Nguyễn Thị Khánh Hiền
6 tháng 1 lúc 16:13

Vì 2n+1 là số chính phương lẻ nên 

2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)

Do đó

n⋮3

Vậy ta có đpcm.

Bình luận (0)
Akai Haruma
2 tháng 5 2018 lúc 22:26

Lời giải:

Ta có:

\(\left\{\begin{matrix} \frac{1}{13}< \frac{1}{12}\\ \frac{1}{14}< \frac{1}{12}\\ \frac{1}{15}< \frac{1}{12}\end{matrix}\right.\Rightarrow \frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{3}{12}=\frac{1}{4}(1)\)

\(\left\{\begin{matrix} \frac{1}{61}< \frac{1}{60}\\ \frac{1}{62}< \frac{1}{60}\\ \frac{1}{63}< \frac{1}{60}\end{matrix}\right.\Rightarrow \frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{3}{60}=\frac{1}{20}(2)\)

Từ \((1);(2)\Rightarrow \frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}\)

Hay \( \frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)

Ta có đpcm.

Bình luận (0)
chú tuổi gì
3 tháng 5 2018 lúc 9:57

Đặt A là biểu thức đó

Ta có:

\(\dfrac{1}{13}< \dfrac{1}{12};\dfrac{1}{14}< \dfrac{1}{12};\dfrac{1}{15}< \dfrac{1}{12}\)

\(\Rightarrow\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}\)

Ta cũng có

\(\dfrac{1}{61}< \dfrac{1}{60};\dfrac{1}{62}< \dfrac{1}{60};\dfrac{1}{63}< \dfrac{1}{60}\)

\(\Rightarrow\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)

\(\Rightarrow\)dpcm

Bình luận (0)
Akai Haruma
25 tháng 4 2018 lúc 19:44

Lời giải:

Phản chứng, tức là giả sử không tồn tại số nào trong các số đã cho chia \(19\) dư $1$

Khi đó các số đã cho chia $19$ có thể dư $0,2,3,...,18$ ($19$ loại số dư)

Mà từ \(10,10^2,...,10^{20}\) có $20$ số, nên theo nguyên lý Dirichlet tồn tại ít nhất \(\left[\frac{20}{19}\right ]+1=2\) số có cùng số dư khi chia cho $19$

Giả sử đó là: \(10^m,10^n(1\leq m< n\leq 20)\)

Khi đó: \(10^n-10^m\vdots 19\)

\(\Leftrightarrow 10^m(10^{n-m}-1)\vdots 19\)

\(\Rightarrow 10^{n-m}-1\vdots 19\) hay \(10^{n-m}\) chia $19$ dư $1$

Mà \(n-m\) chắc chắn thuộc trong khoảng từ \(1\to 20\) , tức là tồn tại số nằm trong các số đã cho chia $19$ dư $1$

Vậy điều giả sử sai. Ta có đpcm.

Bình luận (2)
ngonhuminh
25 tháng 4 2018 lúc 23:56

lớp 6 chỉ biết nguyên con vịt chưa biết đến nguyên lý chim bồ câu

Bình luận (2)
Trương Bảo Uyên
13 tháng 5 2018 lúc 20:17

Akai Huruma hok phải học lớp 6. Cho hỏi bạn học lớp mấy mà đỉnh dzệ

Bình luận (0)
Alex
27 tháng 3 2018 lúc 20:39

0.9

Bình luận (1)
princess neptune
24 tháng 1 lúc 17:48

Ta có biẻu thức:

a1^2+a2^2+a3^2+a4^2+a5^2=a6^2

Giả sử cả sáu số đều là số lẻ => mỗi hạng tử ở vế phải khi chia cho 8 đều có số dư là 1

<=>Nhưng ở vế trái khi cùng chia cho 8 thì lại dư 5 (mâu thuẫn)

Vậy cả sáu số trên đều không thể là số lẻ.

Bình luận (0)
Lạc Anh
25 tháng 12 2016 lúc 15:54

1967

Bình luận (0)
Lê Thị Yến Nhi
5 tháng 12 2017 lúc 21:42

1267

Bình luận (0)
nguyen duc phuc
7 tháng 12 2017 lúc 20:54

2017

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN