Bài 1: Tổng ba góc của một tam giác

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔEBD(cmt)

nên AD=ED(hai cạnh tương ứng)

Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: AF=EC(hai cạnh tương ứng)

Ta có: ΔADB=ΔEDB(cmt)

nên BA=BE(hai cạnh tương ứng)

Ta có: BA+AF=BF(A nằm giữa B và F)

BE+EC=BC(E nằm giữa B và C)

mà BA=BE(cmt)

và AF=EC(cmt)

nên BF=BC

Xét ΔBFC có BF=BC(cmt)

nên ΔBFC cân tại B(Định nghĩa tam giác cân)

Bình luận (1)
tran tuan
28 tháng 2 lúc 19:48

bạn ơi , mình chỗ góc BC là cạnh Bc chứ nhỉ

Bình luận (0)
tran tuan
28 tháng 2 lúc 19:58

a , xét tam giác ABD và tam giác EBD , ta có :^BAD=^BED=90 độBD chung^ABD=^DBE (phân giác )=>t.giác ABD = t.giác EBD ( g.c.g )=> AD = DE ( 2 Cạnh t.ứng )=> BA = BE ( 2 cạnh t.ứng )b, xét t.giác AFD và t.giác EDC , ta có : ^ADF=^EDC ( đối đỉnh )AD =DE ( cmt )^FAD = ^DEC = 90 độ=> t.giác AFD= t,giác EDC( g.c.g )=>AF =EC ( 2 cạnh t.ứng )=>^BFE = ^BAC ( 2 góc t.ứng )+ vì BA = BE , AE =AC => t.giác BFC cân tại B 

Bình luận (0)
Lee Hà
27 tháng 2 lúc 8:09

A. Tam giác ABC = Tam giác KHI

Bình luận (0)

Chọn A nhé bạn

Bình luận (0)
Aaron Lycan
27 tháng 2 lúc 8:54

Đáp án A

Dễ mà bạn

Bình luận (0)

Chọn A nhé bạn

Bình luận (0)
Lee Hà
27 tháng 2 lúc 7:57

A, BC = MP

Bình luận (0)

Chọn A nhé bạn

Bình luận (0)
Lee Hà
27 tháng 2 lúc 7:54

A. 86,7%

Bình luận (0)

Đáp án : A.86,7%

Bình luận (0)

Chọn A nhé bạn

Bình luận (0)
👁💧👄💧👁
24 tháng 2 lúc 16:09

a) △ABM và △ECM có:

\(MB=MC\\ \widehat{AMB}=\widehat{CME}\\ AM=ME\)

\(\Rightarrow\text{△ABM = △ECM (c.g.c)}\)

b) \(\text{△ABM = △ECM}\\ \Rightarrow\widehat{ABM}=\widehat{ECM}\)

Mà 2 góc ở vị trí so le trong

\(\Rightarrow\) AB // CE (dấu hiệu nhận biết)

c) \(\text{△ACM và △EBM có:}\\ AM=EM\\ \widehat{AMC}=\widehat{BME}\\ CM=BM\\ \Rightarrow\text{△ACM = △EBM (c.g.c)}\\ \Rightarrow\widehat{CAM}=\widehat{BEM}\\ \text{△AIM và △EKM có:}\\ AI=EK\\ \widehat{IAM}=\widehat{KEM}\\ AM=EM\\ \Rightarrow\text{△AIM = △EKM (c.g.c)}\\ \Rightarrow MI=MK\)

Bình luận (0)

a) Xét ΔABM và ΔECM có 

MA=ME(gt)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔABM=ΔECM(c-g-c)

Bình luận (0)

Xét tam giác IAE và ICB có:

IA = IC (gt)

Góc BIC = góc EIA (vì 2 góc đối đỉnh) 

IB = IC (gt)

Suy ra: tam giác IAE = tam giác ICB (c.g.c)

Suy ra góc AEI = góc IBC (2 góc tương ứng)

mà 2 góc nằm ở vị trí so le trong

nên AE//BC

c,

Bình luận (1)
Song Ngư
19 tháng 2 lúc 10:34

undefined

undefined

Thông cảm vì chữ mình xấu

Chúc bạn học tốt! banhqua

Bình luận (0)

Xét ΔABC có 

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)

Ta có: Số đo ba góc của ΔABC lần lượt tỉ lệ với 1;2;3(gt)

nên \(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\dfrac{180^0}{6}=30^0\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{\widehat{A}}{1}=30^0\\\dfrac{\widehat{B}}{2}=30^0\\\dfrac{\widehat{C}}{3}=30^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{A}=30^0\\\widehat{B}=60^0\\\widehat{C}=90^0\end{matrix}\right.\)

Vậy: ΔABC là tam giác vuông

Bình luận (0)

đề sai ko bạn

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN