chứng minh rằng:
a. x2+y2+1\(\ge\) xy+x+y
b. x2 -x+1>0\(\forall\) số thực x
Cho x, y là hai số thực thỏa mãn x y + ( 1 + x 2 ) ( 1 + y 2 ) = 1. Chứng minh rằng x 1 + y 2 + y 1 + x 2 = 0.
x y + ( 1 + x 2 ) ( 1 + y 2 ) = 1 ⇔ ( 1 + x ) 2 ( 1 + y ) 2 = 1 − x y ⇒ ( 1 + x 2 ) ( 1 + y 2 ) = 1 - x y 2 ⇔ 1 + x 2 + y 2 + x 2 y 2 = 1 − 2 x y + x 2 y 2 ⇔ x 2 + y 2 + 2 x y = 0 ⇔ x + y 2 = 0 ⇔ y = − x ⇒ x 1 + y 2 + y 1 + x 2 = x 1 + x 2 − x 1 + x 2 = 0
Chứng minh:
a. x2 + xy + y2 + 1 > 0 với mọi x, y
b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z
⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0
x^2+4y^2+z^2-2x-6z+8y+15
=x^2+4y^2+z^2-2x-6z+8y+1+1+4+9
=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1
=(x-1)^2+4(y+1)^2+(z-3^)2+1
Ta thấy:(x−1)^2≥0
4(y+1)^2≥0
(z−3)^ 2≥0
{(x−1)^24(y+1)^2(z−3)^2≥0
⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0
⇒(x−1)2+4(y+1)2+(z−3)2+1≥0+1=1>0
\(x^2+xy+y^2+1.=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3}{4}y^2+1.\\ =\left(x+\dfrac{y}{2}\right)^2+\dfrac{3}{4}y^2+1>0\forall x;y\in R.\\ \Rightarrow x^2+xy+y^2+10\forall x;y\in R.\)
CM rằng
a) x2+2xy+y2+1>0 với mọi x
b) x2+y2+1≥xy+x+y
c) x2-x+1>0 với mọi số thực x
em mong mọi người giúp đỡ em cảm ơn ạ
a) \(x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1\\Do\left(x+y\right)^2>0\forall x\in R\\ \Rightarrow\left(x+y\right)^2+1>0\forall\in R\)
Bài 6: Chứng minh rằng:
a) x2 – x + 1 > 0 với mọi số thực x
b) -x2+2x -4 < 0 với mọi số thực x
Bài 7: Tính nhanh giá trị biểu thức:
tại x = 18; y = 4
b) (2x + 1)2 + (2x - 1)2 - 2(1 + 2x)(1 - 2x) tại x = 100
a) x2 – x + 1
=(x2 – x + 1/4 )+3/4
=(x-1/2)2+3/4
ta có (x-1/2)2>=0
(x-1/2)2+3/4>=+3/4>0
vậy (x-1/2)2+3/4>0 với mọi số thực x
b) -x2+2x -4
= -x2+2x -1-3
=-(x2-2x +1)-3
=-(x-2)2-3
ta có (x-2)2>=0
=>-(x-2)2=<0
=>-(x-2)2-3=<-3<0
vậy -(x-2)2-3<0 với mọi số thực x
Chứng minh rằng:
a,x^2-6xy+9y+1>0 với mọi số thực x và y
b,-25x^2+5x-1<0 với mọi số thực x
\(a,x^2-6xy+9y^2+1=\left(x-3y\right)^2+1\ge1>0\\ b,-25x^2+5x-1=-\left(25x^2+2\cdot5\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(5x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\)
Chứng minh rằng:
a) (x+1)2>=4x
b) x2+y2+2>=2(x+y)
c) (1/x+1/y)(x+y)>=4 (với x>0; y>0)
d) x/y+y/x>=2 ( với x>0; y>0)
Giúp mình với ạ <3
a) Giả sử `(x+1)^2 >= 4x` là đúng.
Có: `(x+1)^2 >=4x <=> x^2+2x+1>=4x`
`<=>x^2+1>=2x`
`<=>x^2-2x+1>=0`
`<=> (x-1)^2>=0 forall x`.
Vậy điều giả sử là đúng.
b) `x^2+y^2+2 >=2(x+y)`
`<=> (x^2-2x+1)+(y^2-2y+1) >=0`
`<=>(x-1)^2+(y-1)^2>=0 forall x,y`
c) `(1/x+1/y)(x+y)>=4`
`<=> (x+y)/(xy) (x+y) >=4`
`<=> (x+y)^2 >= 4xy`
`<=> x^2+2xy+y^2>=4xy`
`<=> (x-y)^2>=0 forall x,y > 0`
d) `x/y+y/x>=2`
`<=> (x^2+y^2)/(xy) >=2`
`<=> x^2+y^2 >=2xy`
`<=> (x-y)^2>=0 \forall x,y>0`.
a) Xét hiệu \(\left(x+1\right)^2-4x\) = \(x^2-2x+1=\left(x-1\right)^2\ge0\)
=> \(\left(x+1\right)^2-\text{4x}\) \(\ge\) 0
=> \(\left(x+1\right)^2\ge\text{4x}\) (điều phải chứng minh)
b) xét hiệu \(x^2+y^2+2-2\left(x+y\right)\) = \(\left(x-1\right)^2+\left(y-1\right)^2\ge0\)
=> \(x^2+y^2+2-2\left(x+y\right)\ge0\)
=> \(x^2+y^2+2\ge2\left(x+y\right)\) (điều phải chứng minh)
c) Xét hiệu \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)-4\) = \((\dfrac{x+y}{xy})\left(x+y\right)-4=\dfrac{\left(x+y\right)^2-4xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\) \(\ge0\)(vì x>0,y>0)
=>\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)\ge4\) (điều phải chứng minh)
d) Áp dụng bất đẳng thức Cau-Chy cho các số x>0;y>0 ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\left(\dfrac{xy}{yx}\right)=2\)
=> \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (điều phải chứng minh)
Mình làm hơi tắt mong bạn thông cảm nhé
Chúc bạn học tốt
a) Chứng minh: nếu x2+y2=1 thì -√2≤x+y≤√2
b)cho x,y,z là các số thực dương
chúng minh :1/x + 1/y +1/z ≥ 1/ √xy+ 1/ √yz+ 1/ √xz
Lời giải:
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 2\geq (x+y)^2$
$\Leftrightarrow \sqrt{2}\geq x+y\geq -\sqrt{2}$
Ta có đpcm.
Bạn mới bổ sung câu b thì làm như sau:
Áp dụng BĐT Cô-si cho các số dương:
$\frac{1}{x}+\frac{1}{y}\geq \frac{2}{\sqrt{xy}}$
$\frac{1}{y}+\frac{1}{z}\geq \frac{2}{\sqrt{yz}}$
$\frac{1}{z}+\frac{1}{x}\geq \frac{2}{\sqrt{zx}}$
Cộng theo vế và thu gọn:
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}$
Dấu "=" xảy ra khi $x=y=z$
Chứng minh: x2 – 2xy + y2 + 1 > 0 với mọi số thực x và y.
Ta có:
x2 – 2xy + y2 + 1
= (x2 – 2xy + y2) + 1
= (x – y)2 + 1.
(x – y)2 ≥ 0 với mọi x, y ∈ R
⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).
cho các số thực dưong x,y,z thỏa mãn : x2+y2+z2=3
chứng minh rằng : \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{zx}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
nhờ mn giúp mk bài này vs ạ
mk đang cần gấp !
cảm ơn mn nhiều
Đặt \(\left(\sqrt[3]{x};\sqrt[3]{y};\sqrt[3]{z}\right)=\left(a;b;c\right)\) \(\Rightarrow a^6+b^6+c^6=3\)
\(a^6+a^6+a^6+a^6+a^6+1\ge6a^5\)
Tương tự: \(5b^6+1\ge6b^5\) ; \(5c^6+1\ge6c^5\)
Cộng vế với vế: \(18=5\left(a^6+b^6+c^6\right)+3\ge6\left(a^5+b^5+c^5\right)\)
\(\Rightarrow3\ge a^5+b^6+b^5\)
BĐT cần chứng minh: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge a^3b^3+b^3c^3+c^3a^3\)
Ta có:
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge a+b+c\) (1)
Mà \(3\left(a+b+c\right)\ge\left(a^5+b^5+c^5\right)\left(a+b+c\right)\ge\left(a^3+b^3+c^3\right)^2\ge3\left(a^3b^3+b^3c^3+c^3a^3\right)\)
\(\Rightarrow a+b+c\ge a^3b^3+b^3c^3+c^3a^3\) (2)
Từ (1);(2) \(\Rightarrow\) đpcm
a) A = x2 - xy + x - y
b) A = x2 - x + xy - 3y
c) A = 3x - 3y + x2 - y2
d) A = x2 - y2 - 2x - 2y
a) \(A=x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)
c) \(A=3x-3y+x^2-y^2=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left(3+x+y\right)\)
d) \(A=x^2-y^2-2x-2y=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)
a) A = a) A = x2 - xy + x - y= (x2 - xy) + (x - y)=x(x-y)+(x-y)=(x+1)(x-y)
c) A = 3x - 3y + x2 - y2=3(x-y)+(x-y)(x+y)=(3+x+y)(x-y)
d) A = x2 - y2 - 2x - 2y = (x-y)(x+y)-2(x+y)=(x+y)(x-y-2)
câu b bạn xem lại đúng đề ko
\(\)a, \(A=x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)