Cho A=\(\frac{2n+5}{n-1}\)(n thuộc N*, n khác 1). Tìm n để A là số nguyên tố.
Cho A=2n+5/n-1 (n thuộc N*, n khác 1).
Tìm n để A là số nguyên tố
cho a=\(\frac{n+8}{2n-5}\) sao cho n thuộc N và n khác 0 . Tìm các giá trị của n để a là số nguyên tố
Cho a= ( n+8) phần ( 2n-5) với n thuộc N, n khác 0. Tìm các giá trị của n để a là số nguyên tố
Lời giải:
Trước khi $a$ là số nguyên tố thì $a$ cần là số nguyên.
Để $a$ nguyên thì với $n\in\mathbb{N}$, ta có:
$n+8\vdots 2n-5$
$\Rightarrow 2(n+8)\vdots 2n-5$
$\Rightarrow (2n-5)+21\vdots 2n-5$
$\Rightarrow 21\vdots 2n-5$
$\Rightarrow 2n-5\in\left\{\pm 1; \pm 3; \pm 7; \pm 21\right\}$
$\Rightarrow n\in \left\{3; 2; 4; 1; 6; -1; 13; -8\right\}$
Do $n$ tự nhiên nên $n\in \left\{3; 2; 4; 1; 6; 13\right\}$
Thử lần lượt các giá trị $n$ vào $a$ ta được:
$n\in\left\{3; 6\right\}$ thỏa mãn
Cho \(a=\frac{n+8}{2n-5}\) (n thuộc N*). Tìm n để a là số nguyên tố?
1)Cho P=n+4/2n-1(n thuộc Z)
a)Tìm các giá trị của n để P là số nguyên tố.
b)Chứng tỏ với mọi giá trị tìm dc của n ở câu a thì P bằng phân số 2n+13/n+2(n khác -2) hoặc P=n^3/n+2(n khác -2)
cho \(A=\frac{5}{6}.\frac{13}{6^2}....\frac{3^{2n}+2^{2n}}{6^{2n}}\)và \(B=\frac{1}{6^{2n+1}-1}\)với n thuộc N
a) Chứng minh: \(M=\frac{A}{B}\)là số tự nhiên
b) Tìm n để M là số nguyên tố
Tìm n thuộc N* sao cho A=\(\frac{1.3.5.7...\left(2n-1\right)}{n^n}+2n\) là số nguyên tố
Cho a= n+8/ 2n-5 (n thuộc N*)
Tìm n để a là số nguyên tố
n thuộc N* => (2n - 5) thuộc Z và lớn hơn hoặc bằng -3
Để a là số nguyên thì 8 chia hết cho (2n - 5)
=> n thuộc Ư(8)
=> Ư( 8 ) = { -1; 1; -2; 2; -4;4;-8; 8 }
=> n thuộc { 2 ; 3 }
Chúc bạn học giỏi nhé !!!
Cho A = n+8/2n-5 (n nguyên dương ). Tìm n để A là 1 số nguyên tố
để n là số nguyên tố suy ra n+8 chia hết cho 2n-5
suy ra:n+8 chia hết cho 2n-5 suy ra:2n+16 chia hết cho 2n-5
và 2n-5 chia hết cho 2n-5 và 2n-5 chia hết cho 2n-5
suy ra [2n+16-2n+5]chia hết cho 2n-5
21 chia hết cho 2n-5
sau đó bạn tìm n rồi thay vào n+8/2n-5 rồi chọn kết quả nguyên tố tương ứng với n
nhớ bấm đúng cho mình nha