tìm số nguyên dương a và b biết \(2.3^a+2.3^b=3^{a+b}\)
tìm các số nguyên dương a va b
\(2.3^a+2.3^b=3^{a+b}\)
tính tổng
A=1.2+2.3+3.4+....+98.99
tìm số nguyên xbiết; 2<GTTĐ x+3<3
tìm giá trị x nguyên để B nguyên ; B= x+3/2x+1
cho 4 số nguyên dương a,b,c,d trong đó b là TBC của a và C đồng thời 1/c=1/2(1/b+1/d)
Biết 2 số 2^3.3^a và 2^b.3^5 có ƯCLN là 2^2.3^5 và BCNN là 2^3.3^6. Hãy tìm giá trị của các số tự nhiên a và b
ƯCLN(2^3*3^a;2^b*3^5)=2^2*3^5 nên b=2 và a<=5
BCNN(2^3*3^a;2^2*3^5)=2^3*3^6 nên a=6
1) cho dãy \(\left(u_n\right)\) xác định bởi \(u_n=2.3^n\) giá trị của \(u_{20}\) với mọi số nguyên dương là
A. 2.\(3^{19}\) B.\(2.3^{20}\) C.\(3^{20}\) D.\(2.3^{21}\)
2) cho dãy \(\left(u_n\right)\) xác định bởi \(u_n=3^n\) số hạng \(u_{n+1}\) là
A. \(3^n+1\) B.\(3^n+3\) C.\(3^n.3\) D.\(3\left(n+1\right)\)
3) cho dãy số \(\left(u_n\right)\) với \(u_n=4^n+2^n\) ba số hạng đầu tiên của dãy là
4) cho dãy số \(\left(u_n\right)\) n ϵ N* biết \(u_n=\dfrac{1}{n+1}\) ba số hạng đầu tiên của dãy số đó là
5) cho dãy số có các số hạng đầu tiên là 5,10,15,20,25,.. số hạng tổng quát của dãy số là
5: \(u_n=5n\left(n\in N\right)\)
4: Ba số hạng đầu tiên là 1/2;1/3;1/4
3: Ba số hạng đầu tiên là 6;20;72
2C
1B
giả sử a= 2.32.73. tìm hai số b thỏa mãn UCLN(a,b)= 2.32.7
có sai đề ko bạn, nếu sai bạn sửa lại đề đi
Biết rằng s=1+2.3+\(3.3^2+...+11.3^{10}\)=a+\(\dfrac{21.3^b}{4}\), với a là số hữu tỉ, b là số nguyên. Tính \(P=a+\dfrac{b}{4}\)
\(S=1.3^0+2.3^1+3.3^2+...+11.3^{10}\)
\(3S=1.3^1+2.3^2+...+11.3^{11}\)
\(\Rightarrow S-3S=1+3^1+3^2+...+3^{10}-11.3^{11}\)
\(\Rightarrow-2S=1.\dfrac{3^{11}-1}{3-1}-11.3^{11}\)
\(\Rightarrow-2S=\dfrac{1}{2}.3^{11}-\dfrac{1}{2}-11.3^{11}\)
\(\Rightarrow-2S=-\dfrac{21.3^{11}+1}{2}\)
\(\Rightarrow S=\dfrac{1}{4}+\dfrac{21.3^{11}}{4}\)
a) Tìm số nguyên dương x biết \(3.3^2.3^3.3^4...3^x\)=\(\left(3^3\right)^{12}\)
b) So sánh A= \(\frac{1}{5^1}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2017}}\)với \(\frac{1}{4}\)
ta có
\(3^{1+2+3+..+x}=3^{3.12}\Leftrightarrow\frac{x\left(x+1\right)}{2}=36\)
\(\Leftrightarrow x.\left(x+1\right)=72=8.9\Leftrightarrow x=8\)
b. ta có
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{2016}}=\left(\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{2016}}+\frac{1}{5^{2017}}\right)+1-\frac{1}{5^{2017}}\)
\(=A+1-\frac{1}{5^{2017}}\Rightarrow4A=1-\frac{1}{5^{2017}}< 1\Rightarrow A< \frac{1}{4}\)
BT1: So sánh hai phân số a-1/a và b+1/b với a và b là các số nguyên cùng dấu
BT2 : Tính A= 2x/3y + 3y/4z + 4z/5t + 5t/2x với các phân số đã liệt kê bằng nhau
BT3 : Cho A = 1/2.3/4. ... .99/100 Chứng minh 1/15 < A < 1/10
BT4 : Tìm các số nguyên dương a b c d thỏa 2 bé hơn hoặc bằng a bé hơn hoặc bằng b bé hơn hoặc bằng c bé hơn hoặc bằng d và (1/2-1/a)+(1/2-1/b)+(1/2-1/c) = 1/2-1/d
BT5 : Tìm số nguyên T lớn nhất không vượt quá 2/ 1/2016+3/2017+5/2018+...+43/2039
1) So sánh: A và B biết: A=8^9+12/8^9+7 và B=8^10+4/8^10-1
2) Cho A=1/2.3/4.5/6.7/8. ... .79/80. Chứng minh rằng: A<1/9
3) Thay a,b bởi các chữ số thích hợp để: 0,ab.(a+b)=0,36
4) Tìm các bộ số x,y,z thỏa mãn: x,y,z là các số nguyên tố và 1/x+1/y+1/z=1/8
ta có:\(A=\frac{8^9+12}{8^9+7}=\frac{8^9+7+5}{8^9+7}=\frac{8^9+7}{8^9+7}+\frac{5}{8^9+7}=1+\frac{5}{8^9+7}\)
\(B=\frac{8^{10}+4}{8^{10}-1}=\frac{8^{10}-1+5}{8^{10}-1}=\frac{8^{10}-1}{8^{10}-1}+\frac{5}{8^{10}-1}=1+\frac{5}{8^{10}-1}\)
vì 810-1>89+7
\(\Rightarrow\frac{5}{8^{10}-1}<\frac{5}{8^9+7}\)
\(\Rightarrow1+\frac{5}{8^{10}-1}<1+\frac{5}{8^9+7}\)
=>A<B
Thấy:k^2>k^2-1=(k-1)(k+1) 2^2>1.3; 4^2>3.5;…;〖80〗^2>79.81
〖Suy ra: A〗^2=(1^2.3^2….〖79〗^2)/(2^2.4^2….〖80〗^2 )<(1^2.3^2….〖79〗^2)/(1.3.3.5.5.7….79.81)=1/81
Vậy: A<1/9
Trần Trung Hiếu - Trường THCS Trung Châu - Đan Phượng - TP. Hà Nội