1/31+1/62+163+..+1/90 và 1/3
1/61+1/62+1/63+...+1/90 và 1/3
tinh nhanh
a ) ( 165 x 99 + 165 x 1 ) - ( 163 x 101 - 163 x 1 )
b ) 24 x 62 + 24 x 2 x 19
a ) ( 165 + 99 + 165 x 1 ) - ( 163 x 101 - 163 x 1 )
= ( 165 x ( 99 + 1 ) ) - ( 163 x ( 101 - 1 ) )
= 165 x 100 - 163 x 100
= 16500 - 16300
= 200
b ) 24 x 62 + 24 x 2 x 19
= 24 x 62 + 24 x 38
= 24 x ( 62 + 38 )
= 24 x 100
= 2400
=
a) ( 165 x 99 + 165 x 1 ) - ( 163 x 101 - 163 x 1 )
= 165 x ( 99 + 1 ) - 163 x ( 101 - 1 )
= 165 x 100 - 163 x 100
= 100 x ( 165 - 163 )
= 100 x 2
= 200
b) 24 x 62 + 24 x 2 x 19
= 24 x 62 + 24 x 38
= 24 x ( 62 + 38 )
= 24 x 100
= 2400
( 165 x 99 + 165 x 1 ) - ( 163 x 101 - 163 x 1)
=[165 x ( 99 + 1 )] - [ 163 x ( 101 - 1)]
=165 x 100 - 163 x 100
= 100 x ( 165 - 163)
=100 x 2 = 200
24 x 62 + 24 x 2 x 19
= 24 x 62 + 24 x 38
= 24 x ( 62 + 38 )
=24 x 100 =2400
1. Tính nhanh
a. (165×99+165) - (163×101-163)
b. 24×62+48×19
a) \(\left(165.99+165\right)-\left(163.101-163\right)\)
\(=165\left(99+1\right)-163\left(101-1\right)\)
\(=165.100-163.100\)
\(100\left(165-163\right)\)
\(=100.2\)
\(=200\)
b) \(24.62+48.19\)
\(=24.62+24.2.19\)
\(=24.62+24.38\)
\(=24\left(62+38\right)\)
\(=24.100=2400\)
\((165.99+165)-(163.101-163)\)
\(=(165.99+165.1)-(163.101-163.1)\)
\(=165(99+1)-163(100-1)\)
\(=165.100-163.100\)
\(=(165-163).100=2.100=200\)
\(24.62+48.19\)
\(=24.62+24.2.19 \)
\(=24.62+24.38\)
\(=24(62+38)\)
\(=24.100=2400\)
Điền dấu ><= vào chỗ chấm: 1/31+1/32+1/33+...+1/89+1/90 và 2/3
a) 274+(158+26) b) 29+132+237+868+163 c) 98.31+62 d) 10+11+12+13+...+99 f) (1+3+5+7+... + 217) (135135.137 - 135.137137 e) 3.25.8+4.37.6+2.38.12
a: =274+184=458
b: =29+132+868+237+163
=1000+400+29
=1429
f: =A*135*137(1001-1001)=0
e: =24*25+24*37+24*38
=24*100=2400
c: =31(98+2)=31*100=3100
tính:1/4*2/6*3/8*.......30/62*31/64
lay ong di qua lay ba di lai cho xin may tick
lay ong di qua lay ba di lai cho xin may tick
lay ong di qua lay ba di lai cho xin may tick
Đặt tính rồi tính:
a) 186 : 62
236 : 59
301 : 49
242 : 78
b) 5 781 : 47
7 163 : 33
1 387 : 73
1 045 : 18
(x-1)x+2=(x-1)x+4
1/ 4 . 2/6 . 3/8 . 4/10 . 5/15 .... 30/62 . 31/64= 2x
a) Ta có: \(\left(x-1\right)^{x+2}-\left(x-1\right)^{x+4}=0\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^x\cdot\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\cdot\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{15}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2x\)
\(\Leftrightarrow2x=\dfrac{1}{64}\)
hay \(x=\dfrac{1}{128}\)
So sánh
1/31 + 1/32 +1/33 + ... + 1/89 + 1/90 và 5/6
Ta có :\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{90}=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{90}\right)\)
60 số hạng 30 số hạng 30 số hạng
\(>\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\right)=30.\frac{1}{60}+30.\frac{1}{90}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
Vậy \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{90}>\frac{5}{6}\)
Ta có: \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=30.\frac{1}{60}=\frac{1}{2}\)
Lại có: \(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{90}>\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}=30.\frac{1}{90}=\frac{1}{3}\)
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{90}>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{90}>\frac{5}{6}\) (đpcm)