Tìm các số a,b,c biết rằng : a/2=b/3=c/4 và a+2b-3c=-20
Tìm các số a,b,c biết rằng: a/2=b/3=c/4 và a+ 2b-3c=-20
Theo đề, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và a+2b-3c=-20
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\)\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
=> \(\frac{a}{2}=5\)
\(\frac{b}{3}=5\)
\(\frac{c}{4}=5\)
=> a =10
b =15
c =20
bạn kiểm tra lại thử nha,Trần Trương Quỳnh Hoa!nếu thấy đúng thì tick cho mình nha!
Tìm các số a,b,c biết rằng : \(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\) và a+2b-3c = -20
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+2b-3c}{2+2\cdot3-3\cdot4}=\dfrac{-20}{-4}=5\\ \Rightarrow\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)
Tìm các số a , b , c , biết rằng \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và a + 2b - 3c = - 20
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=5\\\dfrac{b}{3}=5\\\dfrac{c}{4}=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)
tìm các số a,b,c biết rằng \(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(^{\dfrac{c}{4}}\) và a+2b-3c= -20
`a/2 = b/3 = c/4`
`=> a/2 = (2b)/6 = (3c)/12`
mà `a+2b-3c=-20`
áp dụng tính chất dãy tỉ số bằng nhau ta có
` a/2 = (2b)/6 = (3c)/12 = (a+2b-3c)/(2+6-12)=(-20)/-4 = 5`
` => a=5xx2=10`
`b=5xx3=15`
`c=5xx4=20`
ta có : `a/2=b/3=c/4 =>a/2=(2b)/6=(3c)/12` và `a+2b-3c=-20`
ADTC dãy tỉ số bằng nhau ta có :
`a/2=(2b)/6=(3c)/6=(a+2b-3c)/(2+6-12)=(-20)/-4=5`
`=>a/2=5=>a=5.2=10`
`=>b/3=5=>b=5.3=15`
`=>c/4=5=>c=5.4=20`
#\(N\)
`a/2 = b/3 = c/4 , a+2b-3c = -20`
`-> a/2 =`\(\dfrac{2b}{6}=\dfrac{3c}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
`-> a/2 = 5 , b/3 = 5 , c/4 = 5`
`-> a=2.5 = 10 , b=3.5=15 , c=4.5=20`
Tìm các số a,b,c,biết rằng:
a/2=b/3=c/4 và a+2b-3c=-20
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
+) \(\frac{a}{2}=5\Rightarrow a=10\)
+) \(\frac{b}{3}=5\Rightarrow b=15\)
+) \(\frac{c}{4}=5\Rightarrow c=20\)
Vậy bộ số \(\left(a;b;c\right)\) là \(\left(10;15;20\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/2 = b/3 = c/4 = 2b/4 = 3c/12 = a + 2b - 3c / 4 + 3 - 12 = -20/-5 = 4
a/2 = 4 => a = 4 . 2 = 8
b/3 = 4 => b = 4 . 3 = 12
c/4 = 4 => c = 4 . 4 = 16
Vậy a = 8; b = 12 và c = 16.
Ý, mik nhầm!
Áp dụng dãy tỉ số bằng nhau ta có:
a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c / 2 + 6 - 12 = -20/-4 = 5
a/2 = 5 => a = 5 . 2 = 10
b/3 = 5 => b = 5 . 3 = 15
c/4 = 5 => c = 5 . 4 = 20
Vậy a = 10; b = 15 và c = 20.
Tìm các số a, b, c, biết rằng:
a/2 =b/3 = c/4 và a + 2b - 3c = -20
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow\hept{\begin{cases}a=5.2=10\\b=5.3=15\\c=5.4=20\end{cases}}\)
Vậy ...
1. So sánh các số a, b và c, biết rằng a/b = b/c = c/a.
2. Tìm các số a, b, c, d, biết rằng:
a : b : c : d = 2 : 3 : 4 : 5 và a + b + c + d = -42.
3. Tìm các số a, b, c, biết rằng:
a/2 = b/3 , b/5 = c/4 và a - b + c = -49.
4. Tìm các số a, b, c, biết rằng:
a/2 = b/3 = c/4 và a + 2b - 3c = -20.
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
Bài 2:
a : b : c : d = 2 : 3 : 4 : 5 \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
Với \(\frac{a}{2}=-3\Rightarrow a=-6\)
Với \(\frac{b}{3}=-6\Rightarrow b=-18\)
Với \(\frac{c}{4}=-6\Rightarrow c=-24\)
Với \(\frac{d}{5}=-6\Rightarrow d=-30\)
tìm các số a,b,c,d, bieeest rằng : a/2=b/3=c/4 và a+ 2b - 3c = -20