Tính B = \(1\frac{1}{2}.1\frac{1}{3}..........1\frac{1}{1999}\)
1/ Tính : \(\frac{-8}{5}+\frac{207207}{201201}\)
2/ Tính:
\(M=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}}{\frac{2001}{1}+\frac{2002}{2}+\frac{1999}{3}+...+\frac{1}{2001}}\)
1)\(\frac{-8}{5}+\frac{207207}{201201}\)
=\(\frac{-8}{5}+\frac{207}{201}\)
=\(\frac{-8}{5}+\frac{69}{67}\)
=\(\frac{-191}{335}\)
I : Tính
\(D=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+......+\frac{1}{\sqrt{1999}+\sqrt{2000}}\)
help me !!!
D = \(\frac{1-\sqrt{2}}{1-2}\)+\(\frac{\sqrt{2}-\sqrt{3}}{2-3}\)+\(\frac{\sqrt{3}-\sqrt{4}}{3-4}\)+...+\(\frac{\sqrt{1999}-\sqrt{2000}}{1999-2000}\) (liên hợp)
= -1 +\(\sqrt{2}\) -\(\sqrt{2}\) +\(\sqrt{3}\) -\(\sqrt{3}\) +\(\sqrt{4}\) -... -\(\sqrt{1999}\) +\(\sqrt{2000}\)
= \(\sqrt{2000}\)-1
1.Tính C=\(\frac{\left(1+\frac{1999}{1}\right)\left(1+\frac{1999}{2}\right)\left(1+\frac{1999}{3}\right)...\left(1+\frac{1999}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)\left(1+\frac{1000}{3}\right)...\left(1+\frac{1000}{1999}\right)}\)
\(C=\frac{\left(1+\frac{1999}{1}\right)\left(1+\frac{1999}{2}\right)...\left(1+\frac{1999}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)...\left(1+\frac{1000}{1999}\right)}\)=> \(C=\frac{\frac{2000.2001.2002....2999}{1.2.3...1000}}{\frac{1001.1002.1003....2999}{1.2.3...1999}}\)
=> \(C=\frac{\frac{2000.2001.2002....2999}{1.2.3...1000}}{\frac{\left(1001.1002.1003....1999\right).\left(2000.2001.2002...2999\right)}{\left(1.2.3...1000\right).\left(1001.1002...1999\right)}}\)
=> \(C=\frac{2000.2001.2002....2999}{1.2.3...1000}.\frac{\left(1.2.3...1000\right).\left(1001.1002...1999\right)}{\left(1001.1002.1003....1999\right).\left(2000.2001.2002...2999\right)}=1\)
Đáp số: C=1
Tính \(A=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{99.1}}\)
Tính \(B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)
\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
\(A=\frac{B}{6}=\frac{100}{2}=50\)
Vậy \(A=50\)
6 ở đâu hả https://olm.vn/thanhvien/aihaibara0
Tìm x,y \(\in Z\):
|x-3|.|x+3|=16
Chứng minh:
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2016^2}< \frac{1}{2}\)
So sánh:
\(A=\frac{1999^{1999}+1}{1999^{2000}+1}\)và \(B=\frac{1999^{1998}+1}{1999^{1999}+1}\)
\(A=\frac{\left(1+\frac{1999}{1}\right)\left(1+\frac{1999}{2}\right)\left(1+\frac{1999}{3}\right)...\left(1+\frac{1999}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)\left(1+\frac{1000}{3}\right)...\left(1+\frac{1000}{1999}\right)}\)
hỏi a = ?
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+...+\frac{1}{1999}}\)
Tìm x, biết :
a, \(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{98\cdot99\cdot100}\right)x=-3\);
b, \(\left(\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}}\right)x=\frac{-1}{5}\).
c,\(\left(\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}+2000}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}}\right):x=\frac{-2001}{2002}\).
\(E=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+..+\frac{1}{1999}}\)
Ở mẫu số, bạn tách 1999/1 thaanhf 1999 số 1, sau đó nhóm với các số hạng khác, kết quả là mẫu gấp 2000 laf tử
Vậy E=1/2000