lập phương trình đường thẳng đi qua hai điểm A(1;-1) và B(3;3)
c) Lập phương trình đường thẳng (d) đi qua M(3; 5) và/vg/goc với đường thẳng (d’) có phương trình y = 2x
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
c) Lập phương trình đường thẳng (d) đi qua M(3; 5) và/vg/goc với đường thẳng (d’) có phương trình y = 2x
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
giúp/mik/mik/đang/cần/gấp/ạ
c) Lập phương trình đường thẳng (d) đi qua M(3; 5) và/vg/goc với đường thẳng (d’) có phương trình y = 2x
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
c) Lập phương trình đường thẳng (d) đi qua M(3; 5) và/vg/goc với đường thẳng (d’) có phương trình y = 2x
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
c)
(d) vuông góc với (d') : y = 2x
=> (d) có dạng : y = -2x + b
(d) đi qua M (3,5) :
5 = (-2) . 3 + b
=> b = 10
(d) : y = -2x + 10
d)
Gọi : hàm số có dạng : y = ax + b
Hàm số đi qua điểm A ( 1,2) , B(2,1) nên :
\(\left\{{}\begin{matrix}2=a+b\\1=2a+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)
e)
(d) đi qua gốc tọa độ O :
=> d : y = ax
(d) đi qua điểm A(1;2) nên :
2 = a * 1
=> a = 2
(d) : y = 2x
Trong mặt phẳng tọa độ cho hai điểm A(3;0), B(0;2) và đường thẳng d: x + y = 0.
a) Lập phương trình tham số của đường thẳng Δ đi qua A và song song với d
b) Lập phương trình đường tròn đi qua A,B và có tâm thuộc đường thẳng d
c) Lập phương trình chính tắc của elip đi qua điểm B và có tâm sai e = 5 3
Đường thẳng Δ song song với d ⇒ Δ: x + y + c = 0, (c ≠ 0)
Vì Δ đi qua A ⇒ 3 + 0 + c = 0 ⇒ c = -3(tm)
Vậy đường thẳng Δ có dạng: x+y-3=0
Vì đường tròn có tâm I thuộc d nên I(a;-a)
Vì đường tròn đi qua A, B nên I A 2 = I B 2 ⇒ (3 - a ) 2 + a 2 = a 2 + (2 + a ) 2 ⇔ (3 - a ) 2 = (2 + a ) 2
Vậy phương trình đường tròn có dạng:
Ta có:
Giả sử elip (E) có dạng:
Vì (E) đi qua B nên:
Mà
Vậy phương trình chính tắc của elip (E) là:
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
Lập phương trình đường thẳng đi qua hai điểm (1; -1) và (3; 5)
Phương trình đường thẳng cần tìm có dạng: y = ax + b
Đường thẳng đi qua điểm (1; -1) nên ta có: a + b = -1
Đường thẳng đi qua điểm (3; 5) nên ta có: 3a + b = 5
Khi đó ta có hệ phương trình
Vậy phương trình đường thẳng cần tìm là y = 3x – 4.
Bài 4.
a) Lập phương trình đường thẳng (d) đi qua điểm M (-1; 3) và có hệ số góc bằng 2.
b) Lập phương trình đường thẳng (d) đi qua M(3; 5) và song song với đường thẳng (d’) có phương trình y = 2x
a) Gọi pt đường thẳng (d) là : \(y=ax+b\left(a\ne0\right)\)
Vì (d) có hệ số góc là 2 \(\Rightarrow a=2\Rightarrow y=2x+b\)
Vì đường thẳng d đi qua điểm \(M\left(-1;3\right)\)
\(\Rightarrow3=-2+b\Rightarrow b=5\Rightarrow y=2x+5\)
b) Gọi pt đường thẳng d là \(y=ax+b\left(a\ne0\right)\)
Vì \((d)\parallel (d')\Rightarrow a=2\Rightarrow y=2x+b\)
Vì đường thẳng d đi qua điểm \(M\left(3;5\right)\)
\(\Rightarrow5=6+b\Rightarrow b=-1\Rightarrow y=2x-1\)
Lập phương trình tham số của đường thẳng:
Đi qua hai điểm A(1 ; 0 ; -3) và B(3 ; -1 ; 0).
Đường thẳng AB nhận là 1 vtcp và đi qua A(1; 0; -3)