Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Tuấn Anh
Xem chi tiết
Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 14:01

c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)

\(\Leftrightarrow V\ge-1\forall x\)

Dấu '=' xảy ra khi x=1

Trần anh thư
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 15:02

Ta có: \(C=5-8x-x^2\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16\right)+21\)

\(=-\left(x+4\right)^2+21\le21\forall x\)

Dấu '=' xảy ra khi x+4=0

hay x=-4

Vậy: \(C_{max}=21\) khi x=-4

Trần Minh Hoàng
1 tháng 7 2021 lúc 15:03

Ta có \(C=21-\left(16+8x+x^2\right)=21-\left(x+4\right)^2\le21\forall x\) (do \(\left(x+4\right)^2\ge0\forall x\))

Dấu bằng xảy ra khi x = -4.

Vậy...

Tuyết Ly
Xem chi tiết
Nguyễn Thanh Nhung
Xem chi tiết

\(D=5-8x-x^2\\ =-\left[x^2+2.x.4+16\right]+21\\ =-\left(x+4\right)^2+21\le21\forall x\in R\\ \Rightarrow max_D=21.khi.x=-4\)

\(E=4x-x^2+1\\ =-\left(x^2-2.x.2+4^2\right)+17\\ =-\left(x-2\right)^2+17\le17\forall x\in R\\ Vậy:max_E=17.khi.\left(x-2\right)=0\Leftrightarrow x=2\)

Trần Đình Thiên
4 tháng 8 2023 lúc 9:52

a) D = 5 - 8x - x^2

Để hoàn thành bình phương, ta cần thêm một số vào biểu thức để biến thành một biểu thức có dạng (x - h)^2. Ta có thể thêm 16 vào cả hai phía của biểu thức:

D + 16 = 5 - 8x - x^2 + 16
= 21 - 8x - x^2

Biểu thức trên có thể viết lại thành (x - 4)^2 - 5:

D + 16 = (x - 4)^2 - 5

Để tìm giá trị lớn nhất của D, ta cần tìm giá trị nhỏ nhất của (x - 4)^2. Vì (x - 4)^2 luôn không âm, giá trị nhỏ nhất của nó là 0. Do đó, giá trị lớn nhất của D là 0 - 5 = -5.

Vậy giá trị lớn nhất của biểu thức a là -5.

b) E = 4x - x^2 + 1

Tương tự như trên, ta thêm 4 vào cả hai phía của biểu thức:

E + 4 = 4x - x^2 + 1 + 4
= 5 - x^2 + 4x

Biểu thức trên có thể viết lại thành -(x - 2)^2 + 9:

E + 4 = -(x - 2)^2 + 9

Để tìm giá trị lớn nhất của E, ta cần tìm giá trị nhỏ nhất của -(x - 2)^2. Vì -(x - 2)^2 luôn không dương, giá trị nhỏ nhất của nó là 0. Do đó, giá trị lớn nhất của E là 0 + 9 = 9.

Vậy giá trị lớn nhất của biểu thức b là 9.

Lê Thu Hiền
Xem chi tiết
Huyền Trang
5 tháng 2 2021 lúc 15:15

undefined

Lê Thu Hiền
5 tháng 2 2021 lúc 12:33

Giups mik vs

lolang

Yến Nhi
Xem chi tiết
wattif
2 tháng 3 2020 lúc 15:41

Ơ tưởng là GTNN chứ nhỉ :D

Từ đa thức, ta suy ra:

\(A=-2\cdot\left(-4x+x^2\right)-5\)

\(A=-2\left(x^2-4x+4\right)+8-5\)

\(A=-2\cdot\left(x-2\right)^2-3\)

\(\)Vì 2(x-2)2\(\le\)\(\forall x\)nên minA=-3

Vậy...

Khách vãng lai đã xóa
Nguyễn Linh Chi
2 tháng 3 2020 lúc 19:52

\(A=-2x^2+8x-5=-2\left(x^2-4x+4\right)+8-5\)

\(=-2\left(x-2\right)^2+3\)

Có : \(-2\left(x-2\right)^2\le0\)

=> \(A=-2\left(x-2\right)^2+3\le0+3=3\)

Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2

Vậy max A = 3 tại x = 2.

Khách vãng lai đã xóa
𝑳â𝒎 𝑵𝒉𝒊
4 tháng 3 2020 lúc 11:24

Bạn sắp xếp biểu thức từ lớn xuống nhé, mình sẽ không viết lại đề

\(A=-2\left(x^2-4x+4\right)+8-5=-2\left(x-2\right)^2-3\)

Ta có: \(-2\left(x-2\right)^2\le0\)

\(\Rightarrow A=-2\left(x-2\right)^2+3\ge0+3=3\)

Dấu "=" xảy ra khi và chỉ khi x-2=0 => x=2

Vậy Amax = 3 khi x=2

Khách vãng lai đã xóa
Đen xjnh géi
Xem chi tiết
Yeutoanhoc
2 tháng 6 2021 lúc 10:08

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

_Halcyon_:/°ಠಿ
2 tháng 6 2021 lúc 10:12

A= x2 - 4x +1

   = x2 - 4x + 4 - 3

   = (x-2)2 -3

Ta có (x-2)2 ≥ 0 ∀ x

    ⇒ (x-2)2 -3 ≥ -3 ∀ x

Vậy AMin= -3 tại x=2

B= 4x2+4x+11

  = 4x2+4x+1+10

  = (2x+1)2+10

Ta có (2x+1)2 ≥ 0 ∀ x

     ⇒ (2x+1)2+10 ≥ 10 ∀ x

Vậy BMin=10 tại x= \(\dfrac{-1}{2}\)

C=(x-1)(x+3)(x+2)(x+6)

  = (x-1)(x+6)(x+3)(x+2)

  = (x2+5x-6) (x2+5x+6)

  = (x2+5x)2 -36

Ta có (x2+5x)≥ 0 ∀ x
  ⇒ (x2+5x)2 -36 ≥ -36 ∀ x

Vậy CMin=-36 tại x=0 hoặc x= -5

蝴蝶石蒜
Xem chi tiết
Akai Haruma
30 tháng 5 2021 lúc 17:39

Tính giá trị nhỏ nhất:

\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$

Vậy $A_{\min}=-3$

Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$ 

Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$

$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$

$=(x^2+5x)^2-36\geq 0-36=-36$

Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

 

Akai Haruma
30 tháng 5 2021 lúc 17:42

Tìm giá trị lớn nhất:

$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$

Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$

Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$

$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$

Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$